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Document title: A.A. Blagonravov, Editor in Chief, Collected Works of KE. Tiokovskiy, Vol- 
ume ZZ - Reactive Plying Machines, Translation of “K.E. Tsiolkovskiy, Sobraniye Sochmeniy, 
Tom II - Reaktivnyye Letatal’nyye Apparaty,” Izdatel’stvo Akademii Nauk SSSR, Moscow, 
1954, NASA lT F-237, 1965, pp. 72-1 17. 

Konstantin Tsiolkovskiy was a school teacher who lived in the small town of Kaluga, 
Russia. He is regarded by the Russians as the founder of Soviet rocketry, much as Robert 
Goddard and Hermann Oberth are regarded as the fathers of American and German 
rocketry in their respective countries. He is responsible for associating the term Sputnik, 
or “fellow traveller,” to artificial satellites. But Tsiolkovskiy’s work was almost entirely theo- 
retical and was not widely known or translated outside of Russia, until after his death. 

This article, written in 1898 and first published in 1903, established the fundamen- 
tals of orbital mechanics and proposed the then-radical use of both liquid oxygen and 
liquid hydrogen as fuel. It appeared seventeen years before Goddard repeated much of’ 
the work in the United States and twenty-three years before he began the first experiments 
with liquid propellants. It was also the first detailed discussion of a manned space station. 
The fact that it was not translated until much later meant that its impact on rocket re- 
search around the world was minimal. 

Exploration of the Universe with Reaction Machines 
Heights Reached by Balloons; Their Size and Weight; 

the Temperature and Density of the Atmosphere 

1. So far small unmanned aerostats carrying automatic observation equipment have 
risen to altitudes of not more than 22 km. 

Above this height the difficulties of ascending to higher altitudes by balloon increases 
rapidly. 

Suppose an aerostat is required to climb to an altitude of 27 km carrying a load of 
1 kg. The air density at an altitude of 27 km is about ’/SO of the density at the surface 
(760 mm pressure and O O C ) .  This means that at this altitude a balloon must occupy a 
volume 50 times greater than on the ground. At sea level, it is filled with, say, at least 
2 cubic meters of hydrogen, which at the given altitude will occupy 100 cubic meters. At 
the same time, the balloon will lift a load of 1 kg, i.e., the automatic instruments, and the 
balloon itself will weigh about 1 kg. Assuming the diameter of the envelope to be 5.8 m 
meters, its surface areawill be at least 103 square meters. Therefore, every square meter of 
the material, including the reinforcing mesh sewn into it, should weigh 10 g. 

One square meter of ordinary writing paper weighs 100 g, while one square meter of 
cigarette paper weights 50 g. Thus even cigarette paper would be five times heavier than 
the material needed for our balloon. Such a material could not be used in the balloon, as 
an envelope made from it would tear and allow the gas to leak at a rapid rate. 

Large balloons may have thicker envelopes. Thus, a balloon [ 7 3 ]  with the 
unprecedentedly large diameter of 58 meters would have an envelope, one square meter 
of which would weigh about 100 g, Le., about as much as ordinary writing paper. It would 
lift a load of 1,000 kg, which is much more than an automatic recorder would weigh. 

Ifwe reduce this load to one kilogram, using the same gigantic aerostat, we can make 
the envelope twice as heavy. In general, such a balloon, while expensive, would be per- 
fectly feasible. At an altitude of 27 km it would occupy a volume of 100,000 cubic meters, 
and the surface area of its envelope would be 10,300 square meters. 
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Depth of atmo- 
sphere in kmt 

And yet, how miserable these results seem! A mere 27 km. How then could the in- 
struments be raised higher? The aerostat would have to be still larger. But here it should 
not be forgotten that as the size increases the forces acting on the envelope dominate 
more and more over the resistance of the material. 

Raising instruments beyond the limits of the atmosphere by means of an aerostat is, 
of course, inconceivable; observations of shooting stars reveal that those limits lie no higher 
than 200-300 km. In theory, the top of the atmosphere may even be set at 54 km, ifwe base 
our calculations on a decrease in air temperature by 5°C per kilometer, which is fairly close 
to reality, at least with respect to the accessible layers of the atmosphere.* 

I present a table of altitudes, temperatures and air densities calculated on this basis. 
It shows how rapidly the difficulties increase with altitude. 

The divisor in the last column indicates the degree of difficulty in constructing a 
balloon. [74] 

Temperature Air 
in "C Density 

30 

6 

- 150 1 : 116 

I - 30 

36 

42 
48 
54.5 

I 1 : 2  I 

- 180 1 : 584 
- 210 1 : 3900 
- 240 
- 272 0 

1 : 28 000 

I 12 I - 60 I 1 : 4.32 I 
I 18 I - 90 I 1 : 10.6 I 
I 24 I -120 I 1 : 30.5 I 

2. Let us now consider another possible means of reaching high-altitudes-cannon- 
launched projectiles. 

In practice, the initial velocity of a shell does not exceed 1,200 m/sec. Such a projec- 
tile, if launched vertically, would rise to an altitude of 73 km, if the ascent took place in a 
vacuum. In air, however, the height reached would be much lower depending on the shape 
and mass of the projectile. 

If the shape of the projectile were suitable, it might reach a considerable height; but 
instruments could not be housed inside the projectile, since they would be smashed into 
fragments on its return to Earth or even while it was still moving through the barrel of the 
cannon. The danger would be less if the projectile were shot from a [75] tube, but even 
then it would still be enormous. Suppose, for the sake of simplicity, that the gas pressure 
on the projectile was uniform, so that the acceleration was W m/sec'. Then the same accel- 
eration would also be imparted to all the objects inside the projectile, objects forced to 
share the same motion. As a result, inside the projectile there would develop a relative, 

t Editor's note: According to recent data, in the stratosphere, between 11 and 35 km, the temperature is 
constan: and equal to -56.5"C. In the region between 35 and 50 km a rise in temperature to -30-35°C is observed. 

It is now known that the decrease in temperature continues only as far up as the boundary of the tropw 
sphere, Le., up to 11 km. 



EXPLORING THE UNKNOWN 61 

apparent gravity,* equal to W/g, where g is acceleration due to gravity at the Earth’s sur- 
face. 

The length of the cannon L may be expressed by the formula 

whence 

V2 w=-+g, 
2L 

where V is the velocity acquired by the projectile on leaving the muzzle. 
It is clear from the formula that W, and hence the increase in relative gravity in the 

projectile, decreases with increasing barrel length if V is constant, i.e., the longer the can- 
non the greater the safety of the instruments during the firing of the projectile. But even 
if the cannon were, in theory, extremely long, which is not feasible in practice, the appar- 
ent gravity in the projectile, as the latter accelerates through the barrel, would [76] be- 
come so enormous that the sensitive instruments would hardly be able to withstand it. This 
would make it all the more impossible to dispatch a living organism in the projectile, 
should this be found necessary. 

3. Let us assume that we have succeeded in building a cannon approximately 300 m 
tall. Suppose it has been erected next to the Eiffel Tower which, of course, is the same 
height, and let the projectile, under the uniform pressure of the gases, attain a muzzle 
velocity sufficient to carry it beyond the limits of the atmosphere, e.g., to an altitude of 
300 km above the surface. Then the velocity V required for this purpose may be calculated 
from the formula 

V=J2g.h **, 

where h is the maximum altitude (we obtain approximately 2,450 m/sec). From the last 
two formulas, on eliminating V, we obtain 

where W/g expresses the relative or apparent gravity within the projectile. From the for- 
mula we find it to be equal to 1001. 

Therefore, the weight of all the instruments inside the projectile would increase by 
more than a thousandfold, Le., an object weighing one kilogram would experience a pres- 
sure of 1,000 kg [77] due to the apparent gravity. There is hardly any physical instrument 
that can withstand such a pressure. And what a tremendous shock would be experienced 
by a living organism in a short-barreled cannon and during the ascent to an altitude of 
more than 300 km! 

In order not to lead anyone astray by the words “relative or apparent gravity,” let me 
say that by this I mean a force dependent on the acceleration of a body (for example, a 
projectile). It also appears during the uniform motion of a body, provided this motion is 
curvilinear; it is then termed centrifugal force. In general, relative gravity always appears 

* g force (Editor’s note). 
**In these calculations air resistance was not taken into account (Editor’s note) 
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whenever a body is acted upon by some mechanical force that disturbs its inertial motion. 
Relative gravity operates as long as the force engendering it continues to act; once the 
latter ceases to act, the relative gravity disappears without a trace. If I term this force grav- 
ity, it is only because its temporary effect is exactly the same as that of a gravitational force. 
Just as every material point of a body is subject to gravitation, so relative gravity affects 
every particle of a body enclosed in a projectile; this is because relative gravity depends on 
inertia, by which all the material parts of a body are equally affected. Thus, the instru- 
ments inside the projectile will become 1,001 times heavier. Even if they could be 
preserved intact through this terrlfylng, though momentary (0.24 sec) intensification in 
relative gravity, there would still be many other obstacles to the use of cannons as a means 
of reaching the celestial space. 

First and foremost, there is the difficulty of building such cannons, even in the fu- 
ture; second, there is the tremendous initial velocity of the projectile. Actually, in the dense 
lower layers of the atmosphere the projectile would lose much of its velocity owing to air 
resistance; now this loss in velocity would also considerably reduce the altitude reached by 
the projectilc. Besides, it is difficult to obtain a uniform gas pressure on the projectile, as 
the latter moves through the cannon barrel, so that the intensification of gravity will be 
much greater than calculated (1,001). Finally, the safe return of projectile to Earth would 
be more than doubtful. 

Rocket Versus Cannon 

4. Thus, the tremendous increase in gravity alone is definitely enough to dispel any 
notion of using cannons for our purpose. 

Instead of cannons or aerostats, I propose the use of reaction [78] machines to ex- 
plore the atmosphere. By reaction machine I mean a kind of rocket, but a specially de- 
signed rocket on a grandiose scale. The idea is not new, but the calculations yield such 
remarkable results that they simply cannot be ignored. 

A 

€ 
E 

Figure 1 

A -Freely evaporating liquid oxygen at very low temperature. 
B -Liquid hydrocarbon. 
C -Crew, breathing apparatus, etc. 

I am far from having investigated every side of the matter, nor have I attempted to 
solve the practical problems relating to the feasibility of the concept; however, it is already 
possible to behold, across the veil, such tantalizing and significant glimpses of the distant 
future as could hardly be dreamed of. 

Visualize the following projectile: an elongated metal chamber (the shape of least 
resistance) equipped with electric light, oxygen, and means of absorbing carbon dioxide, 
odors, and other animal secretions; a chamber, in short, designed to protect not only vari- 
ous physical instruments but also a human pilot (we shall consider the problem in its 
broadest terms). The chamber is partly occupied by a large store of substances which, on 
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being mixed, immediately form an explosive mass. This mixture, on exploding in a con- 
trolled and [79] fairly uniform manner at a chosen point, flows in the form of hot gases 
through tubes with flared ends (Fig. l ) ,  shaped like a cornucopia or a trumpet. These 
tubes are arranged lengthwise along the walls of the chamber. At the narrow end of the 
tube the explosives are mixed: this is where the dense, burning gases are obtained. After 
undergoing intense rarefaction and cooling, the gases explode outward into space at a 
tremendous relative velocity at the other, flared end of the tube. Clearly, under definite 
conditions, such a projectile will ascend like a rocket. 

Automatic instruments are needed to control the motion of the rocket, as I shall call 
it, and the force of the explosion in accordance with a predetermined schedule. 

Schematic View of the Rocket 

The two liquid gases are separated by a partition. The place where the gases are 
mixed and exploded is shown, as is the flared outlet for the intensely rarefied and cooled 
vapors. The tube is surrounded by a jacket with a rapidly circulating liquid metal. The 
control surfaces serving to steer the rocket are also visible. 

If the resultant of the explosion forces does not pass through the center of inertia of 
the projectile, the projectile will rotate and, therefore, will not be suitable. Now, it is quite 
impossible to attain a mathematically precise coincidence of this kind, because the center 
of inertia is bound to fluctuate owing to the motion of the substances contained by the 
projectile, in the same way as the direction of the resultant of the gas pressure inside a 
cannon barrel cannot be mathematically fixed. So long as the projectile is still in the air, it 
can be guided with control surfaces like a bird, but what can be done in an airless medium 
where the ether can not provide any appreciable support? 

If the resultant is as close as possible to the center of inertia of the projectile, the 
rotation will be fairly slow. But as soon as it commences, we can shift some mass inside the 
projectile until the ensuing displacement of the center of inertia causes the projectile to 
incline in the opposite direction. Thus, by sensing the movements of the projectile and 
shifting a small mass inside it, we can cause the projectile to swing now in one, now in the 
other direction, so that the general direction of action of the explosives and the general 
direction of motion of the projectile do not change. 

[80] It may be that manual steering of the projectile will be not only difficult but 
even infeasible. In this case, it will be necessary to resort to automatic control. 

The Earth’s gravitational attraction cannot be used as the principal regulating force, 
since the projectile will be governed only by relative gravity due to the acceleration W, the 
direction of which will coincide with the relative direction of the outflowing gases or be 
directly opposite to their resultant pressure. And since this direction varies with the rota- 
tion of the projectile, the relative gravity is unsuitable as the basis of a guidance system. 

On the other hand, it is possible to use a magnetic needle or the strength of the 
Sun’s rays focused by means of a biconvex lens. Whenever the projectile rotates, the small, 
bright image of the sun will change its relative position in the projectile, thus causing the 
expansion of a gas, or creating a pressure or an electric current, and hence the movement 
of a counterweight to restore the direction of the projectile, so that the light spot again 
falls on a neutral, insensitive part of the mechanism. 

There should be two such automatically actuated masses. 
Another basis for the guidance system of the projectile could be a small chamber 

with two disks rapidly rotating in different planes. The chamber is suspended so that its 
position or, more exactly, direction is independent of the direction of the projectile. When 
the projectile rotates, the chamber (if we ignore the friction) retains the same absolute 
direction (relative to the stars) thanks to its inertia; this property manifests itself to a high 
degree when the chamber disks rotate rapidly. If fine springs attached to the chamber 
changed their relative position during the rotation of the projectile, this change could be 
used to excite a current and produce a shift in the position of the counterweights. 
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Lastly, rotation of the mouth of the tube might also serve as a means of keeping the 
projectile on course. The simplest means of steering the rocket would be dual control 
surfaces mounted externally, close to the mouth of the tube. As for preventing the rota- 
tion of the rocket about its longitudinal axis, this can be accomplished by rotating a plate 
located in the gas flow and aligned with the direction of this flow.* 

[811 Advantages of the Rocket 

5. Before expounding the theory of the rocket or similar reaction-propelled devices, 
I shall t ry  to interest the reader in the advantages of the rocket as compared with the 
cannon-launched projectile: 

a) Our device, compared with the gigantic cannon, is as light as a feather, rela- 
tively cheap, and comparatively easy to realize. 

b) The pressure of the explosives, being fairly uniform, creates a uniform accel- 
eration which develops a relative gravity; we can adjust the magnitude of this temporary 
gravity as desired, i.e., by regulating the force of the explosion, and make it arbitrarily 
small or many times greater than normal terrestrial gravity. If we assume for simplicity’s 
sake that the force of the explosion diminishes in proportion to the mass of the projectile 
plus the mass of the remaining, still unexploded fuel, the acceleration of the projectile, 
and hence the relative gravity, will be constant. Thus, with respect to apparent gravity, a 
rocket can safely be used to dispatch not only measuring instruments but also human 
beings, whereas a cannon-launched projectile, even one shot from a colossal cannon as tall 
as the Eiffel Tower, involves a 1,001-fold increase in relative gravity in ascending to 300 km. 

c) Another important advantage of the rocket is that its velocity can be made to 
increase at a desired rate and in a desired direction; it may be kept constant; or it may 
uniformly decrease, thus making possible a safe landing. Everything depends on a reliable 
explosion regulator. 

d) At take-off, when the atmosphere is dense and the air resistance at high speeds 
enormous, the rocket moves comparatively slowly and therefore the losses due to air resis- 
tance are low; moreover, the rocket does not become overheated. 

The velocity of a rocket increases only very slowly; but later on, as it ascends to more 
and more rarefied layers of the atmosphere, it can be made to increase more rapidly, until, 
finally, in airless space the velocity reaches a maximum. Thus, the work done in overcom- 
ing air resistance is reduced to a minimum. 

[821 The Rocket in an Atmosphereless, Gravitationless Medium 
The Mass Ratio of the Rocket 

6. First let us consider the effect in an atmosphereless, gravitationless medium. As 
regards the atmosphere, we shall consider only its resistance to the motion of the projec- 
tile, disregarding its resistance to the expulsion of exhaust gases. The effect of the atmo- 
sphere on the explosion is not altogether clear; on the one hand, it is favorable, since the 
exploding substances receive some support from the material medium, thus contributing 
to an increase in the rocket’s velocity; on the other hand, the density and pressure of the 
atmosphere interfere with the expansion of the gases beyond certain known limits, so that 
these gases do not acquire the velocity they would acquire if expelled in a void. The latter 
effect is unfavorable, since the increase in the velocity of the rocket is proportional to the 

*It is noteworthy that here Tsiolkovskiy anticipates the development of modern exhaust control vanes (Editor’s 
note). 
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velocity of the expelled explosion products, 

7. Let us denote by M, the mass the projectile together with all it contains, except the 
supply of explosives; by M,, the total mass of the explosives; and, lastly, by M, the variable 
mass of the explosives remaining in the projectile in unexploded form at a given instant. 

Thus, the total mass of the rocket at the commencement of the explosion will be: (MI 
+ MJ; some time later, however, it will be expressed by the variable (MI + M); and finally, 
when the explosion ends, by the constant M,. 

In order for the rocket to attain its maximum velocity, it must expel the explosion 
products in a fixed direction relative to the stars. Therefore it must not rotate and, in 
order for it not to rotate, the resultant of the explosive forces-which passes through their 
center of pressure-must at the same time pass through the center of inertia of the whole 
complex of speeding masses. We have already solved the problem of how to accomplish 
this in practice. 

Thus, assuming the optimal expulsion of the gases in a single direction, we obtain 
the following differential equation based on the law of conservation of momentum: 

[831 dV(M, + M) = V,dM (8) 

9. Here dM is an infinitely small mass of explosive material expelled from the mouth 
of the tube at a constant (relative to the rocket) velocity VI. 

10. I should point out that on the basis of the law of relative motion, given the same 
conditions, the relative velocity of the exhaust elements is the same throughout the period 
of the explosion. dV is the increment in the velocity of the rocket together with the re- 
maining unconsumed explosives; this increment, dV, is due to the expulsion of an ele- 
ment dM at the velocity VI. We shall determine the latter in the proper place. 

11. Separating the variables in equation (8) and integrating, we obtain 

-jdV=-j,,,+C, 1 dM 

V, 
or 

- ln(M,+M)+C. (13) 
V, 

where C is a constant. When M = M,, Le., before the explosion, V = 0; thus we find 

C = +In (M, +M,) ; 
and hence 

[84] The velocity of the projectile will be a maximum when M = 0, Le., when the 
entire fuel supply M, has been burned; then, putting M = 0 in the preceding equation, we 
have 
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Hence we see that the velocity V of the projectile increases without limit with in- 
crease in the amount M, of explosives. This means that we can attain different final veloci- 
ties for different voyages, depending on the store of explosives taken on board. Equation 
(16) also shows that a definite quantity of explosive is consumed, the velocity of the rocket 
does not depend on the rate or uniformity of the explosion, so long as the particles of 
exhaust material move at the same velocity V, with respect to the projectile. 

17. However, as the quantity M, increases, the velocity V of the rocket increases ever 
more slowly, though without limit. It increases more or less as the logarithm of the in- 
crease in the amount of explosives M, (if M, is large compared with M,, Le., if the mass of 
the explosives is several times larger than the mass of the projectile). 

18. Further calculations will be of interest, once we have determined V,, Le., the 
relative and final velocity of the explosion products. Since a gas or vapor leaving the mouth 
of the tube is much rarefied and cooled (if the tube is sufficiently long) and may even 
solidlfy-turn into particles of dust rushing at terrific speeds-it may be assumed that, 
when an explosion occurs, the entire energy of combustion or chemical combination is 
transformed into the motion of the combustion products or into kinetic energy. In fact, 
imagine a given amount of gas expanding in a void, without any restrictions: it will expand 
in all directions and, consequently, cool until it turns into droplets of liquid or a mist. 

This mist will turn into minute crystals, no longer due to expansion but rather to 
evaporation and radiation into space. 

[85] On expanding the gas will release all its manifest and part of its latent energy, 
which will ultimately be converted into rapid motion of the minute crystals in all direc- 
tions - since the gas expanded freely. If, however, the gas is forced to expand in a tubular 
chamber, the tube will orient the motion of the gas molecules in a fixed direction, which is 
the method we use to propel our rocket. 

It would seem that the energy of molecular motion is converted into kinetic motion 
as long as a substance remains in the gaseous or vapor state. But this is not quite so. In fact, 
part of the substance may turn to liquid; this involves the release of energy (latent heat of 
vaporization), which is transmitted to the part remaining as a vapor, thus delaying its tran- 
sition to the liquid state. 

We can observe an effect of this kind in a steam cylinder when steam does work 
owing to its own expansion and the valve from the boiler to the cylinder is closed. In this 
case, whatever the temperature of the steam, part of it turns into a mist, Le., the liquid 
state, while the rest remains as a vapor and continues to do work, borrowing the latent 
heat of the condensed and liquefied fraction. 

Thus, the molecular energy will continue to be transformed into kinetic energy at 
least until the liquid state is reached. Once the entire mass turns into droplets, the conver- 
sion to kinetic energywill cease almost completely, because the vapors of liquids and solids 
have only an insignificant pressure when the temperature is low, and their practical utiliza- 
tion is difficult, requiring enormous tubes. 

In addition, an insignificant part of the energy is lost, Le., is not converted into 
kinetic energy, due to friction against the walls of the tube and the radiation of heat from 
the heated parts of the tube. However, the tube can be encased in a jacket through which 
a liquid metal is circulated; this liquid metal will convey heat from the intensely heated 
end of the tube to the end cooled by the rarefaction of the vapor. Thus, the losses due to 
radiation and conduction can also be recovered or minimized. In view of the short dura- 
tion of the explosion, which takes 2 to 5 min at most, the loss due to radiation is negligible, 
even without any special precautions; the circulation of the liquid metal in the tube jacket 
is more important for another purpose: the maintenance of a uniformly low tube wall 
temperature, i.e., the preservation of the mechanical strength of the tube. Despite this it 
may happen that part of the tube will melt, oxidize, and be carried away by the gases and 
vapors. To prevent this, the inside walls of the tube could be lined with some special refrac- 
tory material: carbon, tungsten, etc. Some of the carbon may burn away, but the relatively 
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cool metal tube will suffer little loss of strength. 
As for the gaseous product of combustion of carbon-carbon [86] dioxide-this will 

only intensify the thrust of the rocket. Some kind of crucible material, some mixture of 
substances, might be used. However, I shall not attempt to solve these and other problems 
pertaining to reaction-propulsion machines. 

In many cases I am limited to guesses or hypotheses. I am not deluding myself and I 
am perfectly aware that I am not solving the problem in its entirety, that a thousand times 
more work than I have done must be invested in its solution. My aim is to arouse interest by 
pointing out its great future significance and the feasibility of a solution .... 

The liquefaction of hydrogen and oxygen involves no special difficulty. Hydrogen 
could be replaced by liquid or liquefied hydrocarbons, for example, by acetylene or oil. 
These liquids must be separated by a partition. Their temperature is very low; therefore it 
would be expedient to allow them to surround either jackets with circulating liquid metal 
or the tubes themselves. 

Experience will show which is better. Some metals become stronger when cooled; 
these are the metals that should be employed, copper, for example. I do not recall this 
clearly, but it seems that experiments on the resistance of iron in liquid air have revealed 
that its strength at such low temperatures is virtually dozens of times greater. I cannot 
guarantee the reliability of these experiments, but, in relation to the problem discussed 
here, they deserve the most diligent attention.* (Why not cool ordinary cannon in the 
same way before firing, since liquid air is now so easily obtainable.) 

[87] Liquid oxygen and liquid hydrogen, when pumped from lands and supplied in 
a fixed ratio to the narrow inlet of the tube, where they progressively combine, constitute 
an excellent explosive. The water vapor obtained from the chemical combination of these 
liquids will expand at a tremendously high temperature in the direction of the wide end or 
mouth of the tube, until it cools to a liquid racing toward the outlet in the form of an 
ultrafine mist. 

19. Hydrogen and oxygen in the gaseous state release 3825 calories on combining to 
form 1 kg ofwater. By the word “calorie” I mean the amount of heat required to raise one 
kilogram of water through 1°C. 

This figure (3825 calories) will be somewhat lower in the present case, since the 
oxygen and hydrogen are in the liquid rather than in the gaseous state, to which this 
particular number of calories relates. In fact, the liquids must first be heated and then 
converted to the gaseous state, which requires some expenditure of energy. In view of the 
insignificant amount of energy required, as compared with the chemical energy, we shall 
not reduce this figure (the question has not been completely clarified by science; but we 
are merely taking oxygen and hydrogen as an example). 

Assuming the mechanical equivalent of heat to be 427 kgm, we find that 3825 calo- 
ries corresponds to 1633 kgm ofwork; this is enough to raise the explosion products, Le., 
one kilogram of matter, to an altitude of 1633 km above the surface of the Earth, that the 
force of gravity is constant. This work, converted into motion, corresponds to the kinetic 

*The author mentions a metal, iron, which has proved to be unsuitable with regard to its strength at low 
temperatures, as already pointed out by R. Lademann in his article “Zum Raketenproblem” (On the Rocket 
Problem) in the issue of April 28, 1927, of the periodical ZFM. 

The author replies in the appendix to the book ”Kosmicheskaya raketa, opyinaya podgotovka” (The 
Space Rocket - Experimental Preparations): 

“Concerning the increase in the strength of iron at the temperature of liquid air, in 1903 I merely re- 
peated information that I had read elsewhere, and I shall certainly not insist that it is true, once i t  has been 
proved to be untrue. In  practice, the explosion tube could not attain such a degree of coldness. It is cooled by 
oil which, in turn, is cooled by liquid air. It is enough if the tube does not melt or burn, the petroleum does not 
boil, and the liquid air does not vaporize too quickly. There is no need to reach the temperature of liquid air in 
the explosion tube.” (Editor’s note in “Izbrannyye trudy K. E. Tsiolkovskogo” (Selected Works of K. E. 
Tsiolkovskiy), Book I1 - “Reaktivnoye dvizheniye” (Reaction propulsion), Moscow, ONTI, 1934.) 
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energy of a mass of one kilogram moving at a velocity of 5700 m/sec. I know of no group of 
substances that, on combining chemically, could release such a tremendous amount of 
energy per unit mass of the resulting product. Moreover, some substances on combining 
do not form volatile products at all, which is not at all suitable for our purposes. Thus, 
silicon, on burning in oxygen (Si + 0, = SiO,), releases an enormous amount of heat, 
namely, 3654 calories per unit of mass of the resulting product (SiO,) but, [88] unfortu- 
nately the product is non-volatile. 

Having taken liquid oxygen and hydrogen as the most suitable materials for creating 
an explosion, I gave a somewhat exaggerated figure for their chemical energy per unit 
mass of product (H,O), since in a rocket the explosive substances must be in the liquid 
and not the gaseous state and, moreover, at a very low temperature. 

I consider it pertinent to console the reader with the thought that we may expect not 
only this energy (3825 calories) but an incomparably greater energy in the future, if and 
when our still embryonic ideas are found to be feasible. In fact, on considering the amount 
of energy produced by various chemical processes, we find that as a general rule, though 
naturally with some exceptions, the amount of energy per unit mass of the products of 
chemical combination depends on the atomic weight of the combining elements: the lower 
the atomic weight, the greater the heat released during chemical combination. Thus, the 
formation of sulfur dioxide is accompanied by the release of only 1250 calories, and the 
formation of cupric oxide by only 546 calories, whereas when carbon dioxide CO, is formed, 
the carbon releases 2204 calories per unit mass of CO, hydrogen combining with oxygen, 
as we have seen, releases even more (3825). 

To relate these data to the idea I have just formulated, let me remind you that the 
atomic weights of the elements named are: hydrogen, 1; oxygen, 15; carbon, 12; sulfur, 32; 
silicon, 28; copper, 63. 

Of course, many exceptions to this rule can be cited, but in general it is valid. In fact, 
if we imagine a series of points the abscissas of which express the sum (or mathematical 
product) of the atomic weights of the combining elements, and the ordinates-the corre- 
sponding energy of chemical combination, then, on drawing a smooth curve through 
these points (as close to them as possible), we observe a steady decrease in the ordinates 
with increase in the abscissas, just as our theory suggests. For this reason, if at some time 
so-called simple substances prove to be complex and are separated into new elements, the 
atomic weights of these elements should be smaller than those of the simple substances 
known to us. 

Accordingly, newly discovered elements, upon combining chemically, must release 
an incomparably larger amount of energy than bodies currently considered simple and 
having a comparatively large atomic weight. 

The very existence of the ether with its almost infinite expansibility and the enor- 
mous velocity of its atoms implies that these atoms have an infinitesimally small atomic 
weight and infinite energy when they combine. 

[89] 20. However this may be, for the time being we cannot count on more than 
5700 m/sec as the maximum V, (see 15 and 19). With time, however, who knows, this 
figure may increase several times over. 

Assuming 5700 m/sec, we can calculate from formula (16) not only the velocity ratio 
V/V, but also the absolute value of the final (maximum) velocity V of the projectile as a 

function of its 3 ratio. 
M, 

21. It is evident from formula (16) that the mass of the rocket together with all pas- 
sengers and equipment, MI may be arbitrarily large without thereby detracting in any way 
from the velocity V of the projectile, so long as the supply of explosives, M,, increases in 
direct proportion to M,. 
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Thus, projectiles of any size with any number of passengers may be given any desired 
velocity. However, as we have seen, an increase in the velocity of the rocket is accompanied 
by an incomparably more rapid increase in the mass of the explosives. Therefore, though 
it may be easy to increase the mass of a projectile destined for outer space, it is correspond- 
ingly difficult to increase its velocity. 

Flight Velocities as a Function of Fuel Consumption 

22. From equation (16) we obtain the following table. 

~ 9 1  

[go] 23. From this table it is clear that the velocities attainable by reaction propulsion 
are far from negligible. Thus, when the mass of explosives exceeds 193 times the mass M, 
of the projectile (rocket), the velocity during the final moments of the explosion, when 
the entire supply of explosives M, has been consumed, is equal to the velocity of the Earth 
around the Sun. It should not be supposed that such an enormous mass of explosives 
requires a commensurate amount of high-strength material for the vessels in which it is 
stored. In fact, hydrogen and oxygen in liquid form develop high pressure only if the 
vessels containing them are closed and if the gases themselves get heated due to the influ- 
ence surrounding, comparativelywarm bodies. [91] In the present case, the liquefied gases 
must have a free outlet to the tube into which they flow constantly in liquid form and 
where, on chemically combining, they explode. 

The continuous and rapid flow of gases, corresponding to the evaporation of the 
liquids, cools the latter until their vapors exert hardly any pressure on the surrounding 
walls. Thus, the vessels containing the explosives need not be made very massive. 

24. When the mass of the explosives is equal to the mass of the rocket % = 1 , the 

velocity of the latter is nearly twice as great as would be necessary for a stone or cannon 
ball, launched by “Selenians” from the surface of the Moon, to leave the Moon forever and 
become an Earth satellite, a second Moon. 

(M, 1 
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This velocity (3920 m/sec) is nearly enough for bodies launched from the surface of 
Mars or Mercury to leave these planets forever. 

M 
If the mass ratio 2 = 3  then, when the entire supply of explosives has been con- 

sumed, the projectile will have attained a velocity almost great enough to cause it to re- 
volve like a satellite about the Earth beyond the limits of the atmosphere. 

Ml 

M 
If 2 = 6,  the velocity of the rocket will be nearly great enough for it to leave Earth 

forever and revolve around the Sun like an independent planet. If the supply of explosives 
is big enough, the asteroid belt and even the heavy planets could be reached. 

Ml 

25. It is evident from the table that even if the supply of explosives is small., the final 
velocity of the projectile will still be adequate for practical purposes. Thus, if the fuel sup- 
ply accounts for only 0.1 of the rockets weight, the velocity will be 543 m/sec, which is 
sufficient for the rocket to ascend to 15 km. The table also shows that if the supply is small, 
after completion of the explosion the velocity will be approximately proportional to the 
mass of the fuel (MJ; therefore, in this case, the maximum height will be proportional to 
the square of this mass (MJ. Thus, if the supply of explosives is equal to half the rocket’s 

mass 2 =0.5,  the rocket will fly far beyond the limits of the atmosphere. 

[921 Efficiency of Rocket During Ascent 
Gl 1 
26. It is of interest to determine the fraction of the total work done by the explosives, 

Le., their chemical energy, that is transmitted to the rocket. 

V2 
The work done by the explosives may be expressed as A M 2 ;  the mechanical work 

2 

V2 done by a rocket with the velocity V may be expressed in the same unite: -M,, or, on the 
2 

basis of formula (16) 

v2 v; 
-MI=-Ml{ln 
2 2 

On dividing the work done by the rocket by the work done by the explosives, we 
obtain 

From this formula we can derive the table of energy utilization by the rocket. 
From the table and the formula it is clear that when the amount of explosives is very 
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M, 
Ml 

M2 ' 

M, 
small, the utilization (efficiency) is equal to - i.e., the smaller the relative amount of 

explosives. * 

- M2 Utilization Utilization 
MI 

5 
6 

0.64 193 0.144 
0.63 Infinity Zero 

[94] Further, as the relative amount of explosives increases, the utilization increases 
and reaches a maximum (0.65) when MJM, = 4. 

Any further increase in the proportion of explosives will gradually but steadily re- 
duce their utilization. When the supply of explosives is infinitely large, the utilization falls 
to zero, just as when the supply is infinitely small. It is also clear from the table that when 
M,/M, ranges between 2 and 10 the utilization exceeds one half, i e., more than half the 
potential energy of the explosives is transmitted to the rocket in the form of kinetic en- 
ergy. In general, from 1 to 20 it is extremely high and close to 0.5. 

Rockets Under the Influence of Gravity. Vertical Ascent 

27. We have determined the velocity acquired by the rocket in a gravitationless vacuum 
as a function of the mass of the rocket, the mass of the explosives and their energy of 
chemical combination. 

We shall now consider the effect of gravity on the vertical motion of the projectile. 
When not influenced by gravity, the rocket can acquire dizzy speeds and can utilize a 

considerable proportion of the explosive energy. This also holds true in a gravitational 

x2 x3 x4 
*In fact, in (l+x)=x--+--- ... 

2 3 4  
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environment, so long as the explosion is instantaneous. But this kind of explosion is not 
suitable for our purposes, since it would result in a lethal shock which could be endured 
neither by the projectile nor by the equipment and passengers. Clearly, we need a slow 
explosion; but if the explosion is slow, the useful effect diminishes and may even vanish. 

Suppose the explosion is so weak that the resulting acceleration of the rocket is equal 
to the Earth’s acceleration g. Then throughout the explosion the projectile will hang mo- 
tionlessly in the air without support. 

Of course, it will not acquire any velocity, and the utilization of the explosives, in 
whatever quantity they are present, will be zero. Thus, it is extremely important to analyze 
the effect of gravity on the projectile. 

P51 Determining the Acquired Velocity. Examination of the Numerical 
Values Obtained. Maximum Height. 

When a rocket moves in a gravitationless medium, the time t during which its entire 
supply of explosives is consumed, is 

V t=- 
P ’  

where V is the velocity of the projectile on completion of the explosion, and p is the con- 
stant acceleration imparted to the rocket by the explosives per second.* 

In this simple case of uniform acceleration the force of the explosion, i.e., the amount 
of fuel expended during the explosion per unit of time, will not be constant, but will 
continually diminish in proportion to the decrease in the mass of the projectile as its sup- 
ply of explosives is depleted. 

29. Knowing p, or the acceleration in a gravitationless medium, we can also deter- 
mine the apparent (temporary) gravity inside the rocket during its acceleration or during 
the explosion. 

Taking the force of gravity at the Earth’s surface as unity, we find the temporary 
gravity to be p/g, where g is the Earth’s acceleration; this formula shows how many times 
the pressure acting on the base of all the objects in the rocket exceeds the pressure that 
acts on the same objects when placed on the living room table under normal conditions. It 
is highly important to know the value of relative gravity in the projectile, since it affects the 
reliability of the instruments and the health of those setting out to explore the frontiers of 
space. 

[96] 30. Under the influence of a constant or variable gravity of any intensity, the 
time taken to consume a given supply of explosives will be the same as when there is no 
gravity at all; it can be expressed by formula (28) or by the following formula: 

(31) t=- Vi? 
P-g 

where V, is velocity of the rocket on completion of the explosion in a gravitational medium 
with constant acceleration g. Here, of course, it is assumed that p and g are parallel and 
opposite; p-g expresses the visible acceleration of the projectile (with respect to the Earth), 
which is the result of two opposite forces: the force of the explosion and the force of 
gravity. 

*It is assumed that the mass of the rocket varies in accordance with an exponential law; then the accelera- 
tion p due to the thrust will be constant (Editor’s note). 
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32. The action of the force of gravity on the projectile in no way affects the relative 
gravity inside the projectile, and here the formula p/g still applies. For example, if p = 0, 
Le., if there is no explosion, there is no temporary gravity, because p/g = 0. This means 
that if the explosion ceases and the projectile moves in some direction solely due to its own 
momentum and the gravitational attraction of the Sun, Earth, and other stars and planets, 
an observer inside the projectile will himself apparently be completely weightless, and not 
even the most sensitive spring balance will register when used to weigh any of the objects 
present inside the rocket along with the observer. On falling or rising inside the rocket 
under the action of inertia, even at the very surface of the Earth, the observer will not 
experience the least heaviness unless, of course, the projectile encounters some obstacle 
in the form of, say, the resistance of the atmosphere, water or solid earth. 

33. If p = g, Le., if the pressure of the exploding gases is equal to the weight of the 
projectile (p/g = l ) ,  the relative gravity will be equal to terrestrial gravity. If it was station- 
ary at the outset, the projectile will remain stationary throughout the explosion. If, how- 
ever, the projectile had a certain (upward, lateral, downward) velocity before the explo- 
sion, this velocity will remain absolutely unchanged until the entire supply of explosives is 
consumed; thus the body, that is, the rocket, is balanced and moves as if by inertia in a 
[97] gravitational medium. 

On the basis of formulas (28) and (31) we obtain 

Hence, knowing the velocity V, that must be acquired by the projectile after the ex- 
plosion, we can calculate V, from which, with the aid of formula (16), we can also deter- 
mine the necessary amount of explosives M2 

From equations (16) and (34) we obtain: 

36. From this, as from the preceding formula, it follows that the velocity acquired by 
the rocket is smaller in the presence of gravity than in its absence (16), The velocity V, may 
even be zero despite an abundant supply of explosives if (p/g) = 1, i.e., if the acceleration 
imparted to the projectile by the explosives is equal to the terrestrial acceleration, or if the 
gas pressure is equal and directly opposite to the effect of gravitational attraction (cf. for- 
mulas (34) and (35)).  

In this case the rocket will stand motionless for a few minutes without rising and, 
once the supply of explosives has been consumed, will fall like a stone. 

37. The greater the value of p in relation to g, the greater the velocity V, acquired by 
the projectile, given a specific amount of explosives My (formula (35)) .  
[98] Therefore, if the aim is to climb higher, p must be made as large as possible, i.e., the 
explosion must be as energetic as possible. This, however, requires, first, a sturdier and 
more massive projectile and, second, sturdier equipment and instruments inside the pro- 
jectile, because, according to (32), the relative gravity inside the projectile will be extremely 
large and, in particular, dangerous to any human observer aboard the rocket. 

At any rate, on the basis of formula (35) in the limit 

V,=-V,.ln --+1 ., 1 
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Le., if p is infinitely large or the explosion instantaneous, the velocity V, of the rocket in a 
gravitational environment will be the same as in a gravitationless environment. 

According to formula (30), the explosion time is independent of gravity; it depends 
solely on the ratio M,/M, and the rate of explosion p. 

39. It is important to determine this rate. Suppose in formula (28) V = 11,100 m/sec 
(22) and p = g = 9.9 m/sec2, then t = 1133 sec. This means that in a gravitationless medium 
the rocketwould fly for less than 19 minutes with uniform acceleration, even if the amount 
of explosives were six times the mass of the projectile (22). 

In the event of the explosion occurring at the surface of our planet, however, the 
rocket would stand motionless for the same period of time. 

40. In MJM, = 1 then according to the table, V = 3920 m/sec; therefore t = 400 sec or 
&*/3 min. 

When M,/M1 = 0.1 V = 543 m/sec, t = 55.4 sec, Le., less than a minute. In this case the 
projectile would stand motionless at the Earth's surface for 55-y~ sec. 

Hence we can see that an explosion at the surface of a planet, and in general in any 
medium that is not free of gravity, may be completely ineffective-even if it occurs over a 
prolonged period of time-if it is of insufficient force; in fact, the projectile then [99] 
remains stationary and will have no translational velocity unless some has been previously 
acquired (It will then move over a certain distance at uniform speed). If this motion is 
upward, the projectile will do some work. If the original velocity is horizontal, the motion 
will also be horizontal; then no work will be done,* but the projectile could serve the same 
purpose as a locomotive, steamship or stearable aerostat. The projectile could function in 
this way only for a few minutes, while the explosion takes place, but even during such a 
short period of time it could traverse considerable distances, particularly when moving 
above the atmosphere. However, we do not consider that the rocket is of any practical 
value for flights through the air. 

The time during which a projectile can remain in a gravitational medium propor- 
tional to g, Le., to the force of gravity. 

Thus, on the Moon the projectile could stand motionless, without support, for 

2 hours if %=6. 
MI 

M 
41. In formula (35) for an environment with $= 10 let us put 2= 1; we than calcu- 

late V, = 9990 m/sec. Accordingly, the relative gravity will be 10 g, Le., throughout the 
explosion time (about 2 min) , a person weighing 70 kg will experience gravity ten times as 
great as on Earth, and, on a spring balance, will weigh 700 kg. This gravity can be safely 
endured by the traveler only if he observes special precautions: if he is immersed in a 
special fluid, under special conditions. 

On the basis of formula (28) we can also calculate the explosion time, or the dura- 
tion of the period of intensified gravity; we obtain 113 sec, Le., less than 2 min. This is very 
little, and it is amazing that in such a negligible interval of time a projectile could acquire 
a velocity nearly sufficient to leave the Earth and move around the Sun like a new planet. 

We found V, = 9990 m/sec, Le., a velocity only slightly less than the velocity V acquir- 
able in a gravitationless medium under the same explosion conditions (22). 

But since during the explosion the projectile also climbs to a [loo] certain height, 
the idea suggests itself that the total work done by the explosives is not less than in a 
gravitationless medium. 

MI 

*If no allowance is made for the work done in overcoming atmospheric drag (Editor's note) 
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44. We shall now consider this question. 
The acceleration of the projectile in a gravitational medium may be expressed as: 

P I=P-g .  
At a distance of not more than several hundred versts from the Earth's surface we 

can assume that g is constant; this does not introduce any appreciable error, and moreover 
the error will be on the safe side, Le., the actual figures will be more favorable than those 
calculated. 

The height h reached by the projectile during time t (explosion time) will be 

Eliminating t, in accordance with equation (31) we obtain 

where V, is the velocity of the projectile in a gravitational medium after the entire supply 
of explosives has been consumed. Now, on eliminating V,, from (34) and (46) we obtain 

where V. is the velocity acquired by the rocket in a gravitationless medium. 

[ lo l l  Efficiency 

The useful work done by the explosives in such a medium may be expressed by:* 

V2 

2g 
T=-. 

On the other hand, depending on the height reached by the projectile and its velocity at 
the end of the explosion, the work TI done in a gravitational medium may be expressed as 

V2 

2g 
T, = h + 2 .  

T 

T 
The ratio of 1 (T being the ideal value) is thus 

2hg +V: TI - -_ 
T V2 ' 

(49) 

On eliminating h and V by means of formulas (46) and (34), we find 

*The calculations in formulas (48) and (49) are for a projectile with a weight equal to unity (Editor's 
note). 
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T, = (Q), 
T 

i.e., the work done in a gravitational medium by a given mass of explosives M2 is less than 

g .  in a gravitationless medium: this difference - is the smaller the higher the exhaust veloc- 
P 

ity of the gases or the greater the pressure p. For example, under the conditions of note 41 
the loss is only 1 / 1 0 ,  while the utilization, according to (51), is 0.9. When p = g, or when the 
projectile hovers in the air, lacking even a constant velocity, the loss will be complete ( 1 )  
and the utilization will be zero. The utilization will also be zero if the projectile has a 
constant horizontal velocity. 

52. In note 41 we found V, = 9990 m/sec. Applying formula (46) to this case, we find 
h = 565 km; this means that during the explosion the projectile will travel far beyond the 
limits of the atmosphere and at the same time acquire a velocity of 9990 m/sec. 

Note that this velocity is less than that in a gravitationless medium by 11 10 m/sec or 
exactly '/IO of the velocity in a gravitationless medium (22). 

Hence it is clear that the loss of velocity obeys the same law as the loss of work (51). 
Strictly, this also follows from formula (34) which, after transformation, yields 

P 
From (51) we find 

(56) 

where T, is the work done on the projectile by the explosives in a [ 1031 gravitational me- 
dium with an acceleration equal to g. 

In order for the projectile to perform the necessary work of climbing, overcoming 
atmospheric resistance, and acquiring the desired velocity, the total work done most equal 
TI. 

Having calculated all these forms of work, we find T from formula (56). Knowing T, 
we can calculate V, i.e., the velocity in a gravitationless medium, from the formula 

Knowing V, we can also calculate the required mass of explosives from formula (16). 
Thus, we find 

In the calculations, for the sake of brevity, M, 2 has been replaced by T,. 

Thus, knowing the mass of the projectile M1, together with all it contains apart from 
the fuel M, the mechanical work T, done by explosives when their mass is equal to that of 

[ 3 
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the projectile MI, the work TI which must be done by the projectile during its vertical 
ascent, the acceleration due to the explosion p and gravity g, we can also determine the 
amount of explosives M2 required to lift the mass M1 of the projectile. 

T 
The ratio 2 in the formula will not change if we reduce it by [ 1041 M,, so that TI 

and T, may be construed as the mechanical work TI done by a unit mass of the projectile 
and the mechanical work T2 done by a unit of explosives, respectively. 

In general, the gravity g may be construed as the sum of the accelerations due to 
gravity and the resistance of the medium. But gravity steadily decreases with increasing 
distance from the Earth’s center, so that an increasing fraction of the mechanical work of 
the explosives is utilized. On the other hand, atmospheric resistance, while very insignifi- 
cant in comparison with the weight of the projectile, as we shall see, reduces the utilization 
of the energy of the explosives. 

Further, it can be seen that the latter losses, which continue for some time as the 
projectile races through the atmosphere, are abundantly offset by the gain due to the 
decrease in gravitational attraction at the considerable distances (500 km) at which the 
explosion ceases. 

Thus, formula (20) can be boldly applied to the vertical flight of a projectile, despite 
the complications due to the variation in gravity and the resistance of the atmosphere g = 
9.8. 

=2 

Gravitational Field. Vertical Return to Earth 

59. First let us consider the process of stopping in a gravitationless medium or a 
momentary halt in a gravitational medium. 

Suppose, for example, that, owing to the force produced by the explosion of some 
(not all) of the gases, a rocket acquires a velocity of 10,000 m/sec (22). Now in order to 
stop it, we must give it the same velocity but in the opposite direction. Clearly, in accor- 
dance with (22) ,  the remaining amount of explosives must be five times greater than the 
mass M1 of the projectile. Therefore, on completion of the first part of the explosion (in 
order to acquire translational velocity) the projectile must have a supply of explosives, the 
mass of which may be expressed as 5M1 = M,. 

60. The total mass including the explosives will be M, + MI = 5M1 + MI = 6MI.  This 
mass 6MI must have been given a velocity of 10,000 m/sec by the original explosion, and 
this requires an additional amount of explosives which should also be five times greater 
(22) than [ 1051 the mass of the projectile plus the mass of the explosives needed to stop 
the rocket, Le., 6M1 X 5; thus we obtain 30 MI which, together with the explosives needed 
for stopping the rocket, makes 35 MI. 

M2 

MI 
Using the symbol q=- to denote the number of times the mass of the explosives 

exceeds the mass of the projectile, we may express as follows the above reasoning concern- 
M 

ing the total mass of explosives -2 needed to acquire and annihilate a given velocity as 
M, 

follows: 

-_ M 3  - q + (1 + q).q = q(2 + q), 
M, 
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or, adding and subtracting one from the second part of this equation, we obtain 

M 2 

Ml 
~ = 1 + 2 q + q * - 1 = ( 1 + q )  -1. 

whence we find 

M3 2 

Ml 
-+l=(l+q) . 

This last expression is easy to remember. 
If q is very small, the amount of explosives is approximately 2q (because q2 will be 

negligible), Le., twice as much as needed solely for acquiring a given velocity. 

63. On the basis of the above formulas and table (22) we compile the following table: 

[ 1071 It is evident from this table that if we wanted to acquire and lose a very high 

From (62) and (16) we have 
velocity an impossibly large supply of explosives would be needed. 

M 3 -  ? - l ,  
-2V - M 

A + l = e v l ,  or --e 
Ml Ml 

2 v  . 

V l  
Note that the radio -- is positive, because the velocities of the projectile and the 

gases are opposite in direction and therefore differ in sign. 
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64. If we are in a gravitational medium, then, in the simple case of vertical motion, 
the process of coming to a halt descending to Earth will be as follows: when, owing to its 
acquired velocity, the rocket has risen to a certain altitude and stopped there, its earth- 
ward fall will begin. 

When the projectile reaches the point in its flight where the action of the explosives 
ceased, it is subjected again to the action of the remainder in the case direction and order. 
Clearly, when the explosives cease to act and the entire supply is consumed, the rocket will 
come to a halt at the Earth's surface, whence the flight began. The method of ascent is 
exactly the same as the method of descent, the only difference being that the velocities are 
reversed at every point along the path. 

Coming to a halt in a gravitational field requires more work and explosives than in a 
gravitationless medium, and therefore q [in formulas (61) and (62)] must be greater. 

Denoting this greater value of q by q,, on the basis of the foregoing, we find that 

S=T'=1-& 
41 = P '  

whence 

substituting q, for q in equation (62), we obtain 

2% = (1+ 9J2 -1 = (1+ -$ - 1, 
M, 

here M, denotes the amount or mass of explosives needed to ascend from a given point 
and return to the same point for a rocket coming to a complete stop and traveling in a 
gravitational medium. 

67. On the basis of this last formula we can compile the following table, assuming 
that p/g = 10, Le., that the pressure of the explosives is 10 times greater than the weight of 
the rocket together with the remaining explosives. 

Gravitational Field. Oblique Ascent 

68. Although a vertical ascent would appear to be more expedient, since the atmo- 
sphere is then traversed more rapidly and the projectile rises to a greater height, the work 
done in rising through the atmosphere is very insignificant compared with the total work 
done by the explosives and, moreover, given an oblique ascent it is possible to construct a 
permanent observatory that would travel for an indeterminate length of time around the 
Earth, like the Moon, beyond the limits of the atmosphere. Furthermore, and most impor- 
tant, in an oblique ascent far more of the explosive energy is utilized than in a vertical ascent. 

Let us first consider the special case of horizontal rocket flight [Fig. 21. 
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In a Gravitational Field 

Denoting by R the resultant of the horizontal acceleration of the rocket, by p the 
acceleration due to the explosion, and by g the acceleration due to gravity, we have 

R=Jp2--g2.  (70) 

[ 1101 On the basis of the latter formula,* the kinetic energy acquired by the projec- 
tile during time t equals 

D 

P 
Figure 2 

where t is the explosion time. This is also the total useful work done on the rocket. In fact, 
if we assume the direction of gravity to be constant (which in practice is true only for a 
short trajectory) the rocket does not climb at all. The work done by the explosives on the 
rocket in a gravitationless medium is** 

*Here Tsiolkovskiy calculates the work done by the resultant referred to unit weight of the rocket (Editor’s 
note). 
**Tsiolkovskiy calculates the work done by the reaction force referred to unit weight of the rocket (Editor’s 
note). 
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Dividing the useful work (71) by the total work (72), we obtain [ 11 11 the efficiency 
for horizontal flight. 

2 2  

(-. 2g t)&. 2g t) = 1 - ( E ) z  P . (73) 

As before, the air resistance has not yet been taken into account. 
From this last formula i t  is evident that the loss of work as compared with a 

gravitationless medium may be expressed by (&) . Hence it follows that this loss is much 

smaller than during a vertical ascent. Thus, for example, if g = 1/ 10, the loss will be 1/ 100 

or 1%, whereas in avertical ascent itwould be expressed by K, Le., would equal 1/10, that 

is, 10%. 

2 
P 

P 

P 

74. Here is a table in which p is the angle of inclination of the force p to the horizon. 

Horizontal Motion 

[1121 Oblique Ascent. Work done in Lifting the Projectile Referred 
to the Work in a Gravitationless Medium. Loss of Work. 

75. Now let us solve the general problem-for any angle of inclination of the resultant 
R. A horizontal trajectory or resultant is undesirable, since a projectile flying horizontally must 
travel a vastly greater distance through the atmosphere and do a correspondingly greater amount 
of work in cutting through the air. 

Thus, let us keep in mind that a, the angle of inclination of the resultant to the 
vertical, is greater than a right angle; we have 

where y = a t p (obtuse angle of parallelogram) in accordance with the sketch. 
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Further 

and 
y =  a t p ; sin a : sin p : sin y =  p : g : R (77) 

R2+g2-p2 
cos a = (78) 

2% 

The kinetic energy is expressed by the formula (71), where R is found from equation 
(76). The vertical acceleration of the resultant R 

R, = sin (a-90")R = -cos aR. (79) 

[ 1131 Therefore, the work done in lifting the projectile will be 

R, -cos a 
-t =- Rt2 , 
2 2 

where t is the explosion time for the entire supply of explosives. The total work done on 
the projectile in a gravitational medium [in accordance with (71) and (80) ]  

(81) 
R2 Rt2 cosa-Rt2  R 

T,=-t - -- (--cosa) . 
2g 2 2 g  

Here ascent of the projectile through unit height in a medium with an acceleration 
of one g is taken as the unit ofwork. If a))  go", in the case of the ascent of the projectile, for 
example, then (-cos a) is positive, and vice versa. 

2 

In a gravitationless medium the work will be E t 2  = T  in accordance with (72), (let 
2g 

us not forget that the explosion time t is independent of the gravitational forces). 

sion as compared with its efficiency in a gravitationless medium, namely: 
Taking the ratio of these two values of the work, we obtain the efficiency of the explo- 

Tl - Rt2 R P2 2 - R R  g 

T 2 q  2g P P P  
---(--cos@ : (-t ) --(--- cosa) . (82) 

Eliminating R in accordance with formula (76), we find 

P 

'=1+-+2 T g2 [1141 
T P2 P 

Formulas (51) and (73), for example, are merely special cases of this formula, as may 
be readily ascertained. 

84. We shall now find a use for this formula. Assume that a rocket is ascending at an 
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angle of 14.5" to the horizon; the sine of this angle is 0.25; this means that the atmospheric 
resistance is four times greater than the value for vertical flight, since i t  is more or less 
inversely proportional to the sine of the angle of inclination ( a  - 90') of the trajectory to 
the horizontal. 

85. The angle 01 = 90 t 14 '/* = 104 '/*'; cos a = 0.25; knowing a we can also find p. In 
fact, from (77)  we find 

sin p =sin a- g ; 

P 

thus, if = 0.1 ; 
P 

sin p = 0.0968; p = 5 '/*' 

whence 

y = 1 lo', COS y = 0.342. 

Now we calculate the efficiency to be 0.966. The loss is 0.034 or about ' / g o  or, more 
accurately, 3.4%. 

This loss is one-third of the loss in a vertical ascent, not a bad result, especially if we 
consider that, even in an oblique ascent (14 '/2'), the atmospheric resistance is still less 
than 1% of the work done in lifting the projectile. 

[1151 Oblique Motion 

[ 1161 86. We propose the above table for various approaches: the first column shows 
the inclination to the horizontal; the last column, the loss ofwork; p is the deviation of the 
direction of the pressure exerted by the explosives from the actual line of motion (69). 

87. For very small angles of inclination (01-90') the formula can be much simplified, 

We then obtain the following expression for the loss of work 
by replacing the trigonometric values by their arcs and making other simplifications. 
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N 

Loss 
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0 0.5 1 2 3 4 5 6 10 

1/100 1/91 1/83 1/70 1/60 1/55 1/50 1/45 1/33 

2 
2 x 2 2  6 x +6x(1--)+6 x (x--) 

2 2 

where 6 denotes the angle of inclination (a -go"), expressed as the length of its arc, the 
radius of white is equal to unity, and x denotes the ratio g/p. On discarding the small 
quantities of higher orders, we obtain for the loss 

Let us put 6 = 0.02 N, where 0.02 is the part of a circle corresponding to roughly 1" 
(1 '/7) and N is the number of these new degrees. Then the loss of work may be roughly 
expressed as 

<+0.02fN. P 

From this formula we can readily compile the following table, assuming that 

E=O.l : 
P 

Hence we see that even at large angles (up to 10") the discrepancy between this table 
and the previous, more accurate one is quite small. 

We could have considered many other factors too: the work done by gravity, the 
resistance of the atmosphere; we still have not explained how the explorer could spend a 
long, even unlimited, time in an environment without even a trace of oxygen. We have not 
even mentioned the heating of the projectile during its short flight through the atmo- 
sphere, nor have we given a general picture of the flight itself and of the extremely inter- 
esting phenomena that would (theoretically) accompany it. We have scarcely outlined the 
magnificent prospects of eventually attaining this still distant goal. Lastly, we could also 
have considered the subject of rocket trajectories in outer space. 

Document 1-6 

Document title: Hermann Oberth, Rockets in Planetary Space, 'Ikanslation of "Die Rakete 
zu den Planetraumen," Verlag yon R. Oldenbourg, Munich and Berlin, 1923, NASA TT 
F-9277, December 1964, Introduction. 

Hermann Oberth was born in Transylvania, but considered himself German. In this 
publication he was the first person to outline many of the fundamentals of spaceflight and 
to ground them in mathematics and engineering. He proposed that a rocket could be 
launched to orbit the Earth and that it could travel through the vacuum of space. He also 
addressed the subject ofvarious rocket fuels and proposed a large rocket that used alcohol 
and liquid hydrogen as propellant. Oberth's work served as the inspiration for many later 
pioneers in Germany, particularly Wernher von Braun. 
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Oberth later refined his proposals in the book Wege zur Raumschaffuhrt ( Wuys to Space- 
flzght), which later served as the basis for the spaceship depicted in Fritz Lang’s 1929 mo- 
tion picture Frau zm Mond (The Girl in the Moon). This was the public’s first exposure to a 
realistic spacecraft on the movie screen. 

111 Section 1. Introduction 

1. Given the present state of science and technology, it is possible to build machines 
which can climb higher than the limits of the atmosphere of the earth. 

2. With additional refinement, these machines will be able to attain such velocities 
that, left to themselves in space, they need not fall back to the earth’s surface, and they 
may even leave the field of gravitation of the earth. 

3. These machines can be so constructed that men can be lifted in them, apparently 
with complete safety. 

4. Given certain economical situations, the construction of such machines may even 
become profitable. Such conditions may prevail within a few decades. 

In this work, I intend to prove these four statements. I will first derive some formulas 
which will give us the necessary theoretical insight into the manner of functioning and the 
performance capability of these machines. In Part 11, I will show that their construction is 
technically possible, and in Part 111 I will come to a discussion of the prospects for their 
invention. 

I have strived to be brief. I have been able frequently to simplify the mathematical 
derivations and formulas by using approximated values, which are easy to use mathemati- 
cally, for certain quantities. This procedure was used especially when, in the course of a 
discussion, the facts of a matter could be made more clear. (Incidentally, I have also fre- 
quently indicated the actual value of the result, or at least shown how it could be deter- 
mined from the approximated value, and sometimes I have simply estimated the error.) 
Technical problems, the solution ofwhich no one doubts, have been covered only briefly. 
In Part 111, I have limited myself to indications, since the subjects treated here still lie 
rather far off. 

It has been my purpose here to cover no more than seemed necessary for an under- 
standing of the invention and for an evaluation of the feasibility, because: 

Firstly, it is by no means my intent here to describe a particular model of a machine 
with all its details, but only to show that machines of this sort are possible. (For example, I 
need not calculate the exact altitude which a certain rocket might reach if I can show that 
it is at least possible of meeting the minimum demands placed upon it. Thus I set a con- 
stant value c on [2] the exhaust velocity (cf. page 3) ,  even though this value can vary in 
some cases by as much as 9%, and I discussed the case in which the rocket travels at a 
velocity of v (cf. page 6), even though the fuel is not consumed most efficiently at this 
speed. If I estimate the power of the rocket, based upon v and the most unfavorable value 
of c, and find that the rocket is capable under these circumstances of attaining a required 
final velocity and altitude, then I have also shown that, in actuality, it can surely attain 
them,) I believe that the entire picture is clearer if I do not go into too much detail. 

Secondly, there are some things which I wish not to reveal (particularly technical 
solutions which appear favorable), because these are not protected literary property. If my 
ideas should one day be put into practice, I will naturally want to furnish the exact plans, 
computations and methods of computation. 

Finally, I make no secret of the fact that I consider some of the provisions, in their 
present form, as by no means being definitive solutions. As I worked out my plans and com- 
putations, I naturally had to consider each detail. In so doing, I could at least determine 
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mine that there were no insurmountable difficulties. At the same time, however, it was clear 
to me that some individual questions could be solved only after the most basic special stud- 
ies and experimentation lasting perhaps years, at least if the optimum solution were sought. 

Document 1-7 

Document title: Robert H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian 
Miscellaneous Collections, Volume 71, Number 2 (Washington, DC: Smithsonian Institu- 
tion Press, 1919). The plates have been omitted from these documents. 

Document 1-8 

Document title: “Topics of the Times,” New Ywk Times, January 18,1920, p. 12. 

Even before Robert Goddard retreated to New Mexico and began conducting most 
of his research in seclusion, he rarely published, mostly because of the skepticism and even 
outright ridicule reflected in the New York Times story printed here. His paper, A Method of 
Reaching Extreme Altitudes, was published as part of the Smithsonian Institution’s Miscella- 
neous Collections series, and was a relatively standard scientific publication that would 
impress colleagues but few others. The first edition was bound in brown paper and num- 
bered 1,750 copies, of which Goddard received 90 complimentary ones. The publication 
went unnoticed for eight days before suddenly becoming front-page news in several news- 
papers, including the Boston Amen‘can, the New York Times, the Milwaukee Sentinel, and the 
Sun Francisco Examiner. The stories focused exclusively on the most esoteric part of the 
study, a proposal for traveling to the Moon, which had been played up in an accompanying 
press release from the Smithsonian. The furor in response to this proposal angered 
Goddard, particularly since he felt his concept of a rocket itself was being maligned. The 
controversy did attract the attention of a misinformed editor of the New York Times, who 
derided Goddard’s lack of knowledge about ordinary physics. Contrary to the editor’s 
claims, Goddard’s speculation on the operation of a rocket in a vacuum was widely ac- 
cepted at the time, and proved sound in later application. 

Document 1-7 

Preface 

The theoretical work herein presented was developed while the writer was at Princeton 
University in 1912-1913, the basis of the calculations being the assumption that, if nitrocel- 
lulose smokeless powder were employed as propellant in a rocket, under such conditions 
as are here explained, an efficiency of 50 percent might be expected. 

Actual experimental investigations were not undertaken until 1915-1916, at which 
time the tests concerning ordinary rockets, steel chambers and nozzles, and trials in UQCUO, 

were performed at Clark University. The original calculations were then repeated, using 
the data from these experiments, and both the theoretical and experimental results were 
submitted, in manuscript, to the Smithsonian Institution, in December 1916. This manu- 
script is here presented in the original form, save for the notes at the end which are now 
added. 

A grant of $5000 from the Hodgkins Fund, Smithsonian Institution, under which 
work is being done at present, was advanced toward the development of a reloading, or 
multiple-charge rocket, herein explained in principle, and this work was begun at the 
Worcester Polytechnic Institute in 1917, and was later undertaken as a war proposition. It 



EXPLOFUNG THE UNKNOWN 87 

was continued, from June 1918 up to very nearly the time of signing of the Armistice, at 
the Mount Wilson Observatory of the Carnegie Institution of Washington, where most of 
the experimental results were obtained.. . . 

[I1 Outline 

A search for methods of raising recording apparatus beyond the range for sounding 
balloons (about 20 miles) led the writer to develop a theory of rocket action, in general, 
taking into account air resistance and gravity. The problem was to determine the mini- 
mum initial mass of an ideal rocket necessary, in order that on continuous loss of mass, a 
final mass of one pound would remain, at any desired altitude. 

An approximate method was found necessary, in solving this problem, in order to 
avoid an unsolved problem in the calculus of variations. The solution that was obtained 
revealed the fact that surprisingly small initial masses would be necessary (Table VII) pro- 
vided the gases were ejected from the rocket at a high velocity, and also provided that most of the 
rocket consisted of propellant material. The reason for this is, very briefly, that the velocity 
enters exponentially in the expression for the initial mass. Thus if the velocity of the ejected 
gases be increased fivefold, for example, the initial mass necessary to reach a given height 
will be reduced to t h e j . h  root of that required for the lesser velocity. (A simple calculation 
shows at once the effectiveness of a rocket apparatus of high efficiency.) 

It was obviously desirable to perform certain experiments: First, with the object of 
findingjust how inefficient an ordinary rocket is, and second, to determine to what extent 
the efficiency could be increased in a rocket of new design. The term “efficiency” here 
means the ratio of the kinetic energy being calculated from the average velocity of ejec- 
tion, which was obtained indirectly by observations on the recoil of the rocket. 

It was found that not only does the powder in an ordinary rocket constitute but a 
small fraction of the total mass ( ’/4 or ‘ / 5 ) ,  but that, furthermore, the efficiency is only 
2 percent, the average velocity of ejection being about 1000 ft/sec (Table I ) .  This was true 
[2] even in the case of the Coston ship rocket, which was found to have a range of a 
quarter of a mile. 

Experiments were next performed with the object of increasing the average velocity 
of ejection of the gases. Charges of dense smokeless powder were fired in strong steel 
chambers, these chambers being provided with smooth tapered nozzles, the object of which 
was to obtain the work of expansion of the gases, much as is done in the de Lava1 steam 
turbine. The efficiencies and velocities obtained in this way were remarkably high (Table 
11), the highest efficiency, or rather “duty,” being over 64 percent, and the highest average 
velocity of ejection being slightly under 8000 ft/sec, which exceeds any velocity hitherto 
attained by matter in appreciable amounts. 

These velocities were proved to be real velocities, and not merely effects due to reac- 
tion against the air, by firing the same steel chambers in vacuo, and observing the recoil. 
The velocities obtained in this way were not much different from those obtained in air 
(Table 111). 

It will be evident that a heavy steel chamber, such as was used in the above-mentioned 
experiments, could not compete with the ordinary rocket, even with the high velocities 
which were obtained. If, however, successive charges were fired in the same chamber, much as 
in a rapid-fire gun, most of the mass of the rocket could consist ofpropellant, and the superiority 
over the ordinary rocket could be increased enormously. Such reloading mechanisms, 
together with what is termed a “primary and secondary” rocket principle, are the subject 
of certain United States Patents. Inasmuch as these two features are self-evidendy opera- 
tive, it was not considered necessary to perform experiments concerning them, in order to 
be certain of the practicability of the general method. 

Regarding the heights that could be reached by the above method: an application of 
the theory to cases which the experiments show must be realizable in practice indicates 
that a mass of one pound could be elevated to altitudes of 35,72, and 232 miles, by employ- 
ing initial masses of from 3.6 to 12.6, from 5.1 to 24.3, and from 9.8 to 89.6 Ib, respectively 
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(Table VII). If a device of the Coston ship-rocket type were used instead, the initial masses 
would be of the order of magnitude of those above, raised to the 27th power. It should be 
understood that if the mass of the recording instruments alone were one pound, the en- 
tire final mass would be 3 or 4 pounds. 
[3] Regarding the possibility of recovering apparatus upon its return, calculations show 
that the times of ascent and descent will be short, and that a small parachute should be 
sufficient to ensure safe landing. 

Calculations indicate, further, that with a rocket of high efficiency, consisting chiefly 
of propellant material, it should be possible to send small masses even to such great dis- 
tances as to escape the earth’s attraction. 

In conclusion, it is believed that not only has a new and valuable method of reaching 
high altitudes been shown to be operative in theory, but that the experiments herein de- 
scribed settle all the points upon which there could be reasonable doubt. 

The following discussion is divided into three parts: Part I, theory; Part 11, experi- 
ments; Part 111, calculations, based upon the theory and the experimental results. 

Importance of the Subject 

The greatest altitude at which soundings of the atmosphere have been made by bal- 
loons, namely, about 20 miles, is but a small fraction of the height to which the atmo- 
sphere is supposed to extend. In fact, the most interesting, and in some ways the most 
important, part of the atmosphere lies in this unexplored region, a means of exploring 
which has, up to the present, not seriously been suggested. 

A few of the more important matters to be investigated in this region are the follow- 
ing: the density, chemical constitution, and temperature of the atmosphere, as well as the 
height to which it extends. Other problems are the nature of the aurora, and (with appa- 
ratus held by gyroscopes in a fixed direction in space) the nature of the a, p, and y radio- 
active rays from matter in the sun as well as the ultraviolet spectrum of this body. 

Speculations have been made as to the nature of the upper atmosphere-those by 
Wegener’ being, perhaps, the most plausible. By estimating the temperature and percent- 
age composition of the gases present in the atmosphere, Wegener calculates the partial 
pressures of the constituent gases, and concludes that there are four rather distinct re- 
gions or spheres of the atmosphere in which certain gases predominate: the troposphere, 
in which are the clouds; the stratosphere, predominatingly nitrogen; the hydrogen sphere; 
and the [4] geocoronium sphere. This highest sphere appears to consist essentially of an 
element, “geocoronium,” a gas undiscovered at the surface of the earth, having a spec- 
trum which is the single aurora line, 557 vp, and being 0.4 as heavy as hydrogen. The 
existence of such a gas is in agreement with Nicholson’s theory of the atom, and its inves- 
tigation would, of course, be a matter of considerable importance to astronomy and phys- 
ics as well as to meteorology. It is of interest to note that the greatest altitude attained by 
sounding balloons extends but one-third through the second region, or stratosphere. 

No  instruments for obtaining data at these high altitudes are herein discussed, but it 
will be at once evident that their construction is a problem of small difficulty compared 
with the attainment of the desired altitudes. 

[51 PartI. Theory 

Method to Be Employed 

It is possible to obtain a suggestion as the method that must be employed from the 
fundamental principles of mechanics, together with a consideration of the conditions of 
the problem. We are at once limited to an apparatus which reacts against matter, this mat- 
ter being carried by the apparatus in question. For the entire system we must have: First, 

1 A. Wegener, Phys. zeitschn: 12, pp. 170-178, 214222, 1911. 
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action in accordance with Newton’s third law of motion; and, second, energy supplied 
from some source or sources must be used to give kinetic and potential energy to the 
apparatus that is being raised; kinetic energy to the matter which, by reaction, produces 
the desired motion of the apparatus; and also sufficient energy to overcome air resistance. 

We are at once limited, since subatomic energy is not available, to a means of propul- 
sion in which jets of gas are employed. This will be evident from the following consider- 
ation: First, the matter which, by its being ejected furnishes the necessary reaction, must 
be taken with the apparatus in reasonably small amounts. Second, energy must be taken 
with the apparatus in as large amounts as possible. Now, inasmuch as the maximum amount 
of energy associated with the minimum amount of matter occurs with chemical energy, 
both the matter and the energy for reaction must be supplied by a substance which, on 
burning or exploding, liberates a large amount of energy, and permits the ejection of the 
products that are formed. An ideal substance is evidently smokeless powder, which fur- 
nishes a large amount of energy, but does not explode with such violence as to be uncon- 
trollable. 

The apparatus must obviously be constructed on the principle of the rocket. An ordi- 
nary rocket, however, of reasonably small bulk, can rise to but a very limited altitude. This 
is due to the fact that the part of the rocket that furnishes the energy is but a rather small 
fraction of the total mass of the rocket; and also to the fact that only a part of this energy is 
converted into kinetic energy of the mass which is expelled. It will be expected, then, that 
the ordinary rocket is an inefficient heat engine. Experiments will be described below 
which show that this is true to a surprising degree. 
[6] By the application of several new principles, an efficiency manyfold greater than that 
of the ordinary rocket is possible; experimental demonstrations of which will also be de- 
scribed below. Inasmuch as these principles are of some value for military purposes, the 
writer has protected himself, as well as aerological science in America, by certain United 
States Patents, ofwhich the following have already been issued: Nos. 1,102,653, 1,103,503, 
1,191,299, 1,194,496. 

The principles concerning efficiency are essentially three in number. The first con- 
cerns thermodynamic efficiency, and is the use of a smooth nozzle, of proper length and 
taper, through which the gaseous products of combustion are discharged. By this means 
the work of expansion of the gases is obtained as kinetic energy, and also complete com- 
bustion is ensured. 

The second principle is embodied in a reloading device, whereby a large mass of 
explosive material is used, a little at time, in a small, strong, combustion chamber. This 
enables high chamber pressures to be employed, impossible in an ordinary paper rocket, 
and also permits most of the mass of the rocket to consist of propellant material. 

The third principle consists in the employment of a primary and secondary rocket 
apparatus, the secondary (a copy in miniature of the primary) being fired when the pri- 
mary has reached the upper limit of its flight. This is most clearly shown, in principle, in 
US.  Patent No. 1,102,653. 

By this means the large ratio of propellant material is total mass is kept sensibly the 
same during the entire flight. This last principle is obviously to avoid damage when the 
discarded casings reach the ground, each should be fitted with a parachute device, as 
explained in U.S. Patent No. 1,191,299. 

Experiments will be described below which show that, by application of the above 
principles, it is possible to convert the rocket from a very inefficient heat engine into the 
most efficient heat engine that ever has been devised. 

Statement of the Problem 

Before describing the experiments that have been performed, it will be well to de- 
duce the theory of rocket action in general, in order [7] to show the tremendous impor- 
tance of efficiency in the attainment ofvery high altitudes. A statement of the problem will 
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therefore be made, which will lead to the differential equation of the motion. An approxi- 
mate solution of this equation will be made for the initial mass required to raise a mass of 
one pound to any desired altitude, when said initial mass is a minimum. 

A particular form of ideal rocket is chosen for the discussion as being very amenable 
to theoretical treatment, and at the same time embodying all of the essential points of the 
practical apparatus. Referring to Fig. I ,  a mass H, weighing 1 lb is to be raised as high as 
possible in a vertical direction" by a rocket formed of a cone P, of propellant material, 
surrounded by a casing X The material Pis expelled downward with a constant velocity c. 
It is further supposed that the casing Kdrops away continuously as the propellant material 
P burns, so that the base of the rocket always remains plane. It will be seen that this ap- 
proximates to the case of a rocket in which the casing and firing chamber of a primary 
rocket are discarded after the magazine has been exhausted of cartridges, as well as to the 
case in which cartridge shells are ejected as fast as the cartridges are fired. 

Fig. 1 

[8] Let us call 
M = the initial mass of the rocket 
m = 
v = the velocity of the rocket, at time t 
c = the velocity of ejection of the mass expelled 
R = 
g = the acceleration of gravity 
dm = 
k = the constant fraction of the mass dm that consists of casing expelled with 

dv = 

The differential equation for this ideal rocket will be the analytical statement of 
Newton's third law, obtained by equating the momentum at a time t to that at the time t + 
dt, plus the impulse of the forces of air resistance and gravity, 

the mass that has been ejected up to the time t 

the force, in absolute units, due to air resistance 

the mass expelled during the time dt 

zero velocity relative to the remainder of the rocket 
the increment of velocity given the remaining mass of the rocket 

( M -  m)v = dm(1 - k )  ( v -  c) + vk dm + ( M -  m - dm) (v + dv) + [ R  + g ( M -  m)] dt  

If we neglect terms of the second order, this equation reduces to 

c(1 - k)dm= ( M -  m)dv+ [Rt g ( M -  m)]dt  (1) 

A check upon the correctness of this equation may be had from the analytical expres- 
sion for the conservation of energy, obtained by equating the heat energy evolved by the 
burning of the mass of propellant, dm( 1- k ) ,  to the additional kinetic energy of the system 
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produced by this mass plus the work done against gravity and air resistance during the 
time dt. The equation thus derived is found to be identical with Eq. ( 1 ) .  

Reduction of Equation to the Simplest Form 

In the most general case, it will be found that R and g are most simply expressed 
when in terms of u and s. In particular, the [9] quantity R, the air resistance of the rocket 
at time t, depends not only upon the density of the air and the velocity of the rocket, but 
also upon the cross section Sat the time t. The cross section Sshould obviously be as small 
as possible; and this condition will be satisfied at all times, provided it is the following func- 
tion of the mass of the rocket (M- m), 

S =  A ( M -  m)”’ ( 2 )  

where A is a constant of proportionality. This condition is evidently satisfied by the ideal 
rocket, Fig. 1. Equation (2) expresses the fact that the shape of the rocket apparatus is at 
all times similar to the shape at the start; or, expressed differently, Smust vary as the square 
of the linear dimensions, whereas the mass (M- m) varies as the cube. Provision that this 
condition may approximately be fulfilled is contained in the principle of primary and 
secondary rockets. 

The resistance Rmay be taken as independent of the length of the rocket by neglect- 
ing “skin friction.” For velocities exceeding that of sound this is entirely permissible, pro- 
vided the cross section is greatest at the head of the apparatus, as shown in U.S. Patent No.  
1,102,653. 

The quantities R, g, and a are evidently expressible most simply in terms of the alti- 
tude s, provided the cross section S is also so expressed, giving, in place of Eq. (1) , 

( 3 )  
1 

c( 1-k )dm =( M -  m)du +-[R( s ) + g ( s ) ( M  - m)]ds 
4 s )  

Rigorous Solution for Minimum M a t  A-esent Impossible 

The success of the method depends entirely upon the possibility of using an initial 
mass Mof explosive material that is not impracticably large. It amounts to the same thing, 
of course, if we say that the mass ejected up to the time t (i.e. m) must be a minimum, 
conditions for the existence of a minimum being involved in the integration of the equa- 
tion of motion. 

That a minimum mass m exists when a required mass is to be given an assigned up- 
ward velocity at a given altitude is evident intuitively from the following consideration: If, 
at an intermediate altitude, the velocity of ascent be very great, the air resistance R (de- 
pending upon the square of the velocity) will also be great. On the other hand, if the 
velocity of ascent be very small, force will be required to overcome gravity for a long period 
of time. In both cases the mass necessary to be expelled will be excessively large. 
[ 101 Evidently, then, the velocity of ascent must have some special value at each point of 
the ascent. In other words, it is necessary to determine an unknown function As), defined 
by 

7J =f(4 

such that m is a minimum. 
It is possible to putJs) and ( d f s ) / d s )  dsin place of vand du, in Eq. ( 3 ) ,  and to obtain 

m by integration. But in order that m shall be a minimum 6m must be put equal to zero, 
and the function 8 s )  determined. The procedure necessary for this determination pre- 
sents a new and unsolved problem in the calculus of variations. 



92 PRELUDE TO THE SPACE AGE 

Solution of the Minimum h b h  by an ApproXmate Method 

In order to obtain a solution that will be sufficiently exact to show the possibilities of 
the method, and will at the same time avoid the difficulties involved in the employment of 
the rigorous method just described, use may be made of the fact that if we divide the 
altitude into a large number of parts, let us say n, we may consider the quantities R, g, and 
also the acceleration, to be constant over each interval. 

If we denote by a the constant acceleration defined by u = at in any interval, we shall 
have, in place of the equation of motion (3),  a linear equation of the first order in m and 
t, as follows: 

dm (M-m)(a+g)+R -= 
dt c(1-k)  

the solution of which, on multiplying and dividing the right number of ( a  + g) , is 

where Cis an arbitrary constant. 

t =  0. 
This constant is at once determined as -1 from the fact that m must equal zero when 

We then have 

m= ( M+- a:g){ 1-e [ - s t ] }  ( 5 )  

This equation applies, of course, to each interval, R, g, and a, being considered con- 
stant. We may make a further simplification if, [ 1 I ]  for each interval, we determine what 
initial mass M would be required when the$nal mass in the interval is one pound. The initial mass 
at the beginning of the first interval, or what may be called the “total initial mass,” required 
to propel the apparatus through the n intervals will then be the product of the n quantities 
obtained in this way. 

If we thus place the final mass (M - m),  in any interval equal to unity, we have 
M = m + 1 and when this relation is used in Eq. (5), we have for the mass at the beginning 
of the interval in question 

Now the initial mass that would be required to give the one pound mass the same 
velocity at the end of the interval, if R and g had both been m o ,  is from (6),  

at 
c ( l - k )  

M = e  - (7) 

The ratio of Eq. (6) to Eq. (7) is a measure of the additional mass that is required for 
overcoming the two resistances R and g, and when this ratio is least, we know that M is a 
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minimum for the interval in question. The “total initial mass” required to raise one pound 
to any desired altitude may thus be had as the product of the minimum M s  for each 
interval obtained in this way. 

From Eqs. (6) and (7) we see at once the importance of high efficiency, if the “total 
initial mass” is to be reduced to a minimum. Consider the exponent of e. The quantities a, 
g, and t depend upon the particular ascent that is to be made, whereas c( 1 - k )  depends 
entirely upon the efficiency of the rocket, c being the velocity of expulsion of the gases, 
and k the fraction of the entire mass that consists of loading and firing mechanism, and of 
magazine. In order to see the importance of making c( 1 - k )  as large as possible, suppose 
that it were decreased tenfold. Then 

a+g e- 
c (1 -k)  

would be raised to the 10thpowq in other words, the mass for each interval would be the 
original value multiplied by itself ten times. 

1121 Part 11. Experiments 

Efficiency of Ordinary Rocket 

The average velocity of ejection of the gases expelled from two sizes of ordinary 
rocket were determined by a ballistic pendulum. The smaller rockets C, Fig. 1, averaged 
120 gm, with a powder charge of 23 gm; and the larger, S, the well-known Coston ship 
rocket, weighed 640 gm, with a powder charge of 130 gm. Fig. 2, shows the rockets as 
compared with a yardstick Y. 

The ballistic pendulum, was a massive compound pendulum weighing 70.64 kg 
(155 lb) with a half period of 4.4 sec; large compared with the duration of discharge of the 
rockets. The efficiencies were obtained from the average velocity of ejection of the gases, 
found by the usual ballistic-pendulum method, together with the heat value of the powder 
of the rockets, obtained by a bomb calorimeter for the writer by a Worcester chemist. 

The results of these experiments are given in Table I. It will be seen from the table 
that the efficiency of the ordinary rocket is close to 2 percent;” slightly less for the smaller, 
and slightly more for the larger, rockets, and also that the average velocity of the ejected 
gases is of the order to 1000 ft/sec. It was found by experiment that a Coston ship rocket, 
lightened to 510 gm by the removal of the red fire, had a range of a quarter of a mile, the 
highest point of the trajectory being slightly under 490 ft. A range as large as this is rather 
remarkable in view of the surprisingly small efficiency of this rocket. 

Type of rocket 

Common 
Common 
Common 
Common 

Coston ship 
Coston ship 
Coston ship 

Efficiency 

2.54% 
1.45 
1.40 
1.95 

1.75% 
2.27 
2.62 

Table I 

Mean efficiency 

1.86% 

2.21% 

Velocity corresponding 
to mean efficiency 

957.6 ft/sec 

1029.25 ft/sec 
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Mass 
of 

powder 

[ 131 Experiments in Air With Small Steel Chambers 

An apparatus was next constructed, with a view to increasing the efficiency, embody- 
ing three radical changes, namely, the use of smokeless powder, of much higher heat value 
than the black powder employed in ordinary rockets; the use of a strong steel chamber, to 
permit employment of high pressures; and the use of a tapered nozzle, similar to a steam 
turbine nozzle, to make available the work of expansion. 

Two sizes of chamber were used, one '/An. diameter, and one 1-in. diameter. The 
inside and outside diameters of the smaller chamber, Fig. 2a, were, respectively, 1.28 cm 
and 3.63 cm. The nozzle, polished until very smooth, was of 8" taper, and was adapted to 
permit the use of two extensions of different lengths. The length of the chamber, as the 
distance 1 in the figure will be called, could be altered by putting in or removing cylindrical 
tempered-steel plugs of various lengths, held in place by the breechblock.. .. 

Two small chambers were used, practically identical in all respects, one of the soft 
tool steel, and one of best selected nickel-steel gun-barrel stock, treated to give 100,000 lb 
tensile strength, for which the writer wishes to express his indebtedness to the Winchester 
Repeating Arms Company. 

of 
wadding 

and 
wire 

Table I1 

gm 

0.7795 
0.7060 
1.0025 
0.8247 
1.2015 
0.7074 
0.8533 
0.6825 
1.2397 
0.9625 
0.7361 
0.8985 
0.9068 
0.7465 
1.0264 
1.2731 
1.4849 

Expm 
m n t  
no. 

P 

0.0345 
0.0385 
0.0370 
0.0395 
0.0380 
0.0370 
0.0370 
0.0355 
0.0370 
0.0365 
0.0386 
0.0391 
0.0396 
0.0373 
0.0445 
0.0420 
0.0402 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
29 
44 
46 

51 

52 

Chamber 

Chromenickel 2.28 19,324.0 16.29 Du Pont 8.0522 0.3184 

Chromenickel 2.28 19,324.0 16.29 Infallible 9.0259 0.3271 
steel 

steel 

Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Soft steel 
Nickel steel 
Nickel steel 
Nickel steel 

Length 

chamber 
of 

m 

0.69 
0.69 
1.01 
0.69 
1.01 
0.69 
0.69 
0.69 
1.01 
1.01 
0.69 
0.69 
0.69 
0.69 
0.69 
1.01 
0.69 

Total 
mass 
M 

gm 

3,540.1 
3,541.9 
3,538.8 
3,541.9 
3,538.8 
3,547.9 
3,540.1 
3,540.1 
3,645.8 
3,645.8 
3,648.93 
3,533.9 
3,645.8 
3,533.9 
3,553.5 
6,273.5 
6,270.5 

Length 

nozzle 
of 

cm 

Medium 
Medium 
Medium 
Medium 
Medium 
Short 
Short 
Short 
Long 
Long 
Long 
Medium 
Long 
Medium 
Medium 
Medium 
Medium 

Kind 
of 

powder 

Du Pon t 
Du Pont 
Du Pont 
Infallible 
Infallible 
Du Pont 
Infallible 
Du Pont 
Infallible 
Du Pont 
Du Pont 
Infallible 
Infallible 
Du Pont 
Infallible 
Infallible 
Infallible 

Small 

Large 
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f t /sec 

5,843 
5,703 
6,257 
6,484 
6,832 
5,203 
5,793 
5,336 
6,709 
6,018 
5,592 
6,069 
6,177 
5,279 
6,460 
6,981 
7,064 

e 
O - N m b W  

percent 

39.01 
37.16 
44.73 
37.13 
41.88 
30.93 
30.12 
32.54 
40.39 
41.38 
35.74 
33.05 
34.24 
31.38 
37.44 
43.73 
44.78 

(a) P ‘B ( b ) h Z  

5.02 2.290 

7.08 2.434 

Fig. 2 

7,515 64.53 

7,987 57.25 

The charge of powder P, Fig. 2, was fired electrically, by a hot wire in the following 
way: Atine copper wire w, 0.12-mm diameter, passed through the wadding, Fig. 26, consist- 
ing of two disks of stiff cardboard, and this copper wire joined a short length of platinum 
or platenoid wire of 0.1-mm diameter f; extending across the inner [14] part of the 

chamber 

11.55 
10.30 
15.80 
13.60 
20.55 
9.43 

12.59 
9.35 

20.18 
14.20 
10.22 
13.90 
13.85 
10.07 
17.95 
12.58 
14.78 

chamber 

d2 

n 

11.41 
10.19 
15.70 
13.50 
20.46 
9.38 

12.53 
9.31 

20.10 
14.10 
10.10 
13.83 
13.80 
10.00 
17.85 
12.38 
14.68 

corrected 
d 

cm 

11.62 
10.35 
15.85 
13.65 
20.59 
9.45 

12.62 
9.37 

20.22 
14.25 
10.28 
13.94 
13.87 
10.10 
18.00 
12.68 
14.93 

Length 

pendulum 
of 

n 

79.15 
79.15 
79.15 
79.15 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 
79.50 

I Velocity 

km/sec 

1.781 
1.738 
1.907 
1.976 
2.082 
1.585 
1.766 
1.626 
2.045 
1.834 
1.704 
1.850 
1.882 
1.609 
1.969 
2.127 
2.154 

E f j c i m q  1 
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wadding, in contactwith the powder. To the other end of this platinum wire, a short length 
of the copper wire passed to the side of the wadding, and made electrical contact with the 
wall of the chamber. A fine steel wire N 0.24 mm in diameter, served to pull the copper 
wire w tightly enough to prevent contact of the latter with the nozzle. The wire W was so 
held that, although it exerted a pull on the wire w, it nevertheless offered no resistance in 
the direction of motion of the ejected gases. 

Two dense smokeless powders were used: Du Pont pistol powder No. 3, a very rapid 
dense nitrocellulose powder, and Infallible shotgun powder, of the Hercules Powder Com- 
pany. The heat values in all cases were found by bomb calorimeter.' All determinations 
were made in an atmosphere of carbon dioxide, in order to avoid any  heat due to the 
oxygen of the air. The average heat values were the following: 

Powder, in ordinary rocket 545.0 cal/gm 
Powder, in Coston ship rocket 528.3 
Du Pont Pistol No. 3 972.5 
Infallible 1238.5 

The ballistic pendulum used in determining the average velocity of ejection, for the 
small chambers, consisted essentially of a plank B, carrying weights, and supporting the 
chamber, or gun, C, in a horizontal position. This plank was supported by fine steel wires 
in such a manner that it remained horizontal during motion. In order to make certain that 
the plank actually was horizontal in all positions, a test was frequently made by mounting a 
small vertical mirror on the plank, with its plane perpendicular to the axis of the gun, and 
observing the image of a horizontal object-as a lead pencil-held several feet away while 
the pendulum was swinging. Current for firing the charge was led through two drops of 
mercury to wires on the plank. A record of the displacements was made by a stylus consist- 
ing of a steel rod S, pointed and hardened at the lower end. This rod slid freely in a vertical 
brass sleeve, attached to the under side of the plank, and made a mark upon a smoked- 
glass strip G. In this way the first backward and forward displacements of the pendulum 
were recorded, and the elimination of friction was thereby made possible. 

The data and results of these experiments are given in Table 11, in which d is the 
displacement corrected for friction. 
[ 151 The velocities and efficiencies were obtained from the usual expression for the veloc- 
ity in which a ballistic pendulum, with the bob constantly horizontal, is used, namely, 

where M = the total weight of the bob 
m = the mass ejected; powder plus wadding 
I = the length of the pendulum 
8 = the angle through which the pendulum swings 
g = the acceleration of gravity 

The cosine of Owas corrected for friction by observing the two first displacements d, and d, 
and obtaining therefrom 

It will be noticed that the highest velocity was obtained with Infallible powder, and 

1.  It was found necessary to use a sample exceeding a certain mass, as otherwise the heat value depended 
upon the mass of the sample. 
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was over 7000 ft/sec. The corresponding efficiency was close to 50 percent. In view of the 
fact that this velocity, corresponding to cin the exponents of Eqs. (6) and ( 7 ) ,  is sevenfold 
greater than for an ordinary rocket, it is easily seen that the employment of a chamber and 
nozzle such as hasjust been described must make an enormous reduction in initial mass as 
compared with that necessary for an ordinary rocket.. .. 

[ 171 Experiments With Large Chamber 

Inasmuch as all the steel chambers employed in the preceding experiments were of 
the same internal diameter (1.26 cm), it was considered desirable that at least a few experi- 
ments should be performed with a larger chamber, first, in order to be certain that a large 
chamber is operative; and second, to see if such a chamber is not even more efficient than 
a small chamber. This latter is to be expected for the reason that heat and frictional losses 
should increase as the square of the linear dimensions of the chamber; and hence increase 
in a less proportion than the mass of powder that can be used with safety, which will vary as 
the cubeof the linear dimensions. Evidence in support of this expectation has already been 
given. Thus, for ordinary rockets, the larger rocket has the higher efficiency, as evident 
from Table I. 

The large chamber was of nickel-alloy steel (Samson No. 3A), of 115,000 Ib tensile 
strength, for which the writer takes opportunity of thanking the Carpenter Steel Com- 
pany. This chamber had inside diameter, and diameter of throat, both twice as large as 
those of the chambers previously used; the thickness ofwall of the chamber and the taper 
of the nozzle were, however, the same. The inside of the nozzle was well polished. Figure 3 
shows a section of the chamber; the outer boundary being indicated by dotted lines, P 
being the powder, and Wthe wadding. It will be noticed that the wadding is just twice the 
size of that previously used.. . . 

I 
O - N C I V -  

P W  
Fig. 3 

The chamber was held in the lower end of a [18] 3 '/pft length of 2-in. pipe P by 
setscrews. Within this pipe, above the chamber, was fastened a length of 2-in. steel shafting, 
to increase the mass of the movable system. This system was supported by '/An. steel pin E. 

On firing, the recoil lifted the above system vertically upward against gravity, the 
extent of this lift, or displacement, being recorded by a thin lead pencil, slidable in a brass 
sleeve set in the pipe at right angles to the pin E. The point of the pencil was pressed 
against a vertical cardboard C by the expelled gases will be called the "direct-lift'' method; 
and the theory is given in Appendix A. 

Although rebound of the gases from the ground would probably have been negli- 
gible, such rebound was eliminated by a short plank D, covered with a piece of heavy sheet 
iron, and supported at an angle of 45" with the horizontal. This served to deflect the gases 
to one side. 

The results of two experiments, 51 and 52, with this large chamber, are given in Table 
11. In experiment 51, with Du Pont powder, the powder was packed rather loosely. Any 
increase in internal diameter was inappreciable, certainly under 0.01 mm. In experiment 
52, the Infallible powder was somewhat compressed. After firing, the chamber was found 
to be slightly bulged for a short distance around the middle of the powder chamber, the 
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inside diameter being increased from 2.6 cm to 2.7 cm, and the outside diameter from 
5.08 cm to 5.14 cm. The efficiency (64.53 percent) in experiment 51 and the velocity 
(7987 ft/sec) in experiment 52 were, respectively, the highest obtained in any of the ex- 
periments. 

The conclusions to be drawn from these two experiments are, first, that large cham- 
bers can be operated, under proper conditions, [ 191 without involving undue pressures; 
and second, that large chambers, even with comparatively short nozzles, are more efficient 
and give higher velocities than small chambers. 

It is obvious that large grains of powder should be used in large chambers if danger- 
ous pressures are to be avoided. The bulging in experiment 52 is to be explained by the 
grains of powder being too small for a chamber of the size under consideration. It is pos- 
sible, however, that pressures even as great as that developed in experiment 52 could be 
employed in practice provided the chamber were of “built-up” construction. A similar 
result might possibly be had if several shots had been fired, of successively increasing 
amounts of powder. The result of this would have been a hardening of the wall of the 
chamber by stretching. Such a phenomenon was observed with the soft-steel chamber 
already described, which was distended by the first few shots of Infallible powder, but 
thereafter remained unchanged with loads as great as those first used.” 

Esgeriments in Vacuo 

Introductory 

Having obtained average velocities of ejection up to nearly 8000 ft/sec in air, it re- 
mained to determine to what extent these represented reaction against the air in the nozzle, 
or immediately beyond. Although it might be supposed that the reaction due to the air is 
small, from the fact that the air in the nozzle and immediately beyond is of small mass, it is 
by no means self-evident that the reaction is zero. For example, when dynamite, lying on 
an iron plate, is exploded, the particles which constituted the dynamite are moved very 
rapidly upward, and the reaction to this motion bends the iron plate downward; but reac- 
tion of the said particles against the air as they move upward may also play an important 
role in bending the iron. The experiments now to be described were undertaken with the 
view of finding to what extend, if any, the “velocity in air” was a fictitious velocity. The 
experiments were performed with the smaller soft tool-steel and nickel-steel chambers 
that have already been described. 

Method of Supporting the Chamber i .I Vacuo 

For the sake of convenience, the chamber, or gun, should evidently be mounted in a 
vertical position, so that the expelled gases are shot downward, and the chamber is moved 
upward by the reaction, either being lifted bodily, or suspended by a spring and set in 
vibration. 
[20] The whole suspended system was therefore designed to be contained in a 3-in. steel 
pipe, all the essential parts being fastened to a cap, fitting on the top of this pipe. This was 
done not only for the sake of convenience in handling the heavy chamber, but also from 
the fact that the only joint that would have to be made airtight for each shot would be at 
the Sin. cap. 

The means of supporting the chamber from the cap is shown in Plate 6,  Fig. 2, and 
Plate 7, Fig. 1, the apparatus being shown dismantled in Plate 7, Fig. 2. Two 3/s-in. steel 
rods R, R were threaded tightly by taper (pipe) threads into the cap C. These rods were 
joined by a yoke, at their lower ends, which served to keep them always parallel. Two 
collars, or holders, Hand H’, free to slide along the rods R, R, held the chamber or gun, by 
three screws in each holder. The inner ends of the screws of the lower holder were made 
conical, and these fitted into conical depressions c, Fig 2a [page 3491, drilled in the side of 
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the gun, so that the lower holder could thus be rigidly attached to the gun. This was made 
necessary in order that lead sleeves, fitting the gun and resting upon the lower holder H', 
could be used to increase the mass of the suspended system. Three such sleeves were used, 
the two largest being molded around thin steel tubes which closely fitted the gun. The 
rods R, Rwere lubricated with Vaseline. Two '/a-in. steel pins were driven through the rods 
R, R, just above the yoke Y, in order that the latter could not be driven off by the fall of the 
heavy chamber and weights when direct lift was employed. 

In the experiments in which the chamber and lead sleeves were suspended by a spring, 
the latter was hooked at its upper end to a screw eye fixed in the cap C. The lower end of 
the spring was hooked through a small cylinder of fiber. A record of the displacements of 
the suspended system was made by a stylus S, Plate 6, Fig. 2 ,  in the upper holder H. This 
stylus was kept pressed against a long narrow strip of smoked glass G by a spring of fine 
steel wire. This strip of smoked glass was held between two clamps, fastened to a rod, the 
upper end ofwhich was secured to the cap C, and the lower end to the yoke Y. Except for 
the largest charges used, it was possible to measure the displacements on both sides of the 
zero position, and thereby to calculate the decrement and eliminate friction. 

When the chamber was suspended by a spring, a deflection as large as a centimeter 
was unavoidably produced merely by placing the cap C on the 3-in. pipe or removing i t ,  
although, in all cases the [21] system would return to within 1 mm (usually much less than 
this) of the zero position after being displaced. In order to avoid any such displacement as 
thatjust mentioned, an eccentric clamp X, Plate 7, Fig. 1, was employed to keep the sus- 
pended system rigidly in its zero position during assembling and dismounting the apparatus. 

This clamp consisted of an eccentric rod K, free to turn in a hold in the cap C, the 
lower end being held in a bearing in the yoke Y. Through the upper end of this rod was 
pinned a small rod K', at right angles to X The surface of the rod Kwas smeared with a 
mixture of beeswax, resin, and Venice turpentine; and the hole in the cap through which 
Kprojected was rendered airtight by wax of the same composition. 

The suspended system was assembled while the cap Cwas held by a support touching 
its under side. When the assembling was complete, the wax was heated by a small alcohol 
blowtorch until it was soft, then a rubber band was slipped around the rod K' and the 
outlet pipe E. A trial showed that the cap could now be put in place on the pipe and 
removed, without the suspended system moving appreciably. After the cap Cwas in posi- 
tion on the pipe, the rubber band was removed, and the wax heated until the rod Kcould 
be turned out of engagement with the holders H, H'. After a shot had been fired, the 
clamp was again placed in operation until the system had been taken from the 3-in. pipe 
and the smoked glass removed. 

The circuit which carried the electric current to ignite the charge consisted of the 
insulated wire W, Plate 7, Fig. 1, which passed through a tapered plug of shellacked hard 
fiber, in the cap C, thence through a glass tube to the yoke Y, to which it was fastened. 
Below the yoke it was wrapped with insulating tape, except at the lower end where it was 
shaped to hold the 0.24mm steel wire, attached to the fine copper wire from the wadding. 
From the chamber the current passed up the rods R, Rand out of the cap, around which 
was wrapped a heavy bare copper wire V,  which together with W, constituted the terminals 
of the circuit. It should be mentioned, in passing, that a small amount of black powder B, 
Fig, 2a [page 3491, placed over the platinum fuse wire on the wadding, was found neces- 
sary as a primer in order to ignite dense smokeless powders in uucuo. 

In order to make the joint between the cap and the pipe airtight during a determina- 
tion, the following device was adopted. The outside of the cap C and also a locknut were 
both turned down to the same diameter. The locknut was made fast to the pipe. These 
were [22] then painted on the outside with melted wax consisting of equal parts beeswax 
and resin with a little Venice turpentine. 

When a determination was to be made, the cap was screwed into position, a wide 
rubber band was slipped over the junction between cap and locknut, and the outside of 
this rubber band was heated with an alcohol blast torch. The result was a joint, for all 



100 PRELUDE TO THE SPACE AGE 

practical purposes, absolutely airtight, which could, nevertheless, be dismounted at once 
after pulling off the rubber band. 

Theory of the Experiments in Vacuo 

The expressions for the velocity of the expelled gases are easily obtained for the two 
types of motion of the suspended system that were employed, namely, simple harmonic 
motion produced by a spring, and direct lift. 

Simple harmonic motion. Results obtained with simple harmonic motion (slightly 
damped, of course) were naturally more accurate than with direct lift, as it was impossible 
in the latter case to eliminate friction. The theory, for simple harmonic motion, in which 
account is taken of friction is described in Appendix B. The spring was one made to speci- 
fications, particularly as regards the magnitude of the force per-centimeter-increase-in- 
length by the Morgan Spring Company of Worcester, Massachusetts. Care was taken to 
make certain that in no experiment was the extension of the spring reduced to such a low 
value as not to lie upon the rectilinear line part of the calibration curve. 

Direct lift The theory of the motion, in this case, has already been given under Appendix 
A. In this case it might be assumed that a correction could be made for friction by multi- 

plying the displacement s by some particular decrement Jd, / d 2  obtained in the experi- 
ments with simple harmonic motion, that might reasonably apply. This, as will be shown 
below, was found to give results in good agreement for the two types of motion, if the 
direct lift was about 2 cm; but not if it was much larger. It was found that very little fric- 
tional resistance was experienced when the mass Mwas raised by hand, provided the axis 
of the gun were kept strictly vertical, but a very considerable resistance was experienced if 
the axis was inclined to one side so that the holders H, H‘ rubbed against the rods R, R 
This sidewise pressure did not take place when the spring was used. It was also found that 
the trace upon the smoked glass was always slightly sinuous, with direct lift, and [23] straight 
with the spring. The simple harmonic motion was, therefore, much the more preferable, 
but could not be used when the powder charges were large. 

Means of Eliminating Gaseous Rebound 

It should be remembered that the real object of the vacuum experiments is to ascer- 
tain what the reaction experienced by the chamber would be, if a given charge of powder 
were fired in the chamber many miles above the earth’s surface. A container is therefore 
necessary, which, for the purpose at hand, approaches most nearly a container of unlim- 
ited capacity. A length of Sin. pipe, closed at the ends, is evidently unsuitable, because the 
gas, fired from one end, is sure to rebound from the other end with considerable velocity, 
and hence to produce a much larger displacement than ought really to be observed. 
Moreover, any tank of finite size must necessarily produce a finite amount of rebound, 
from the fact that the whole action is equivalent to liberating suddenly, in the tank, 1 or 
2 liters of gas at atmospheric pressure. 

There are two possible methods for reducing the velocity of the gas sufficiently to 
produce a negligible rebound: a disintegration method, whereby the stream is broken up 
into many small streams, sent in all directions (Le. virtually reconverted into heat); and 
second, afiction method, whereby the individual stream remains moving in one direction, 
but is gradually slowed down by friction against a solid surface. 

As will be shown below, accurate results were obtained by the first method, in what 
may be called the “cylindrical” tank; and these results were checked satisfactorily by the 
second method, in what will be called the “circular” tank. 

The cylindrical tank was 10 ft 5 in. high and weighed about 500 lb. It consisted of a 
6-ft length T, Fig. 4 and Plate 8, Fig. 1, of 12-in. steel pipe, with threaded caps on the ends. 
Entering the upper cap at a slight angle was the %in. pipe P, 4 ’/2 ft long, which supported 
the cap Cof Plate 6, Fig. 2, and Plate 7, Fig. 1. The 12-in. pipe was sawn across at the dotted 
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line To, so that any device could be placed in the interior of this tank, or removed from it, 
as desired. The upper section of the tank was lifted off as occasion demanded by a block 
and tackle. The two ends to be joined were first painted with the wax previously described; 
and after the tank had been assembled, the joint was painted on the outside with the same 
wax W, and the entire tank thereafter painted with asphalt varnish. 

[241 

Fig. 4 

This tank was used under three conditions: 
1. Tank empty, with the elbow E to direct the gas into a swirl such that the gas, while 

in motion, would not tend to return up the pipe P. In this case some rebound was to be 
expected from this elbow. This expectation was realized in practice. 

2. Tank empty, and elbow cut off along the dotted line E,. In this case, more rebound 
was to be expected than in Case 1, which was borne out in practice. 

3. Elbow E cut at E,, and tank half filled with '/An. square-mesh wire fencing. Two 
separate devices constructed of this wire fencing were used one above the other. The gas 
first passed through an Archimedes spiral J, of 2-ft fencing, comprising eight turns, 
[25] held apart by iron wires bound into the fencing. This construction allowed most of 
the gas to penetrate the spiral to a considerable distance before being disturbed, and, of 
course, eliminated regular reflection. This second device J ' ,  placed under the first, con- 
sisted of a number of 12-in. circular disks of the same fencing, bound to two '/4-in. iron 
rods Qby iron wires. These disks were spaced 1 in. apart. The three upper disks were single 
disks, the next lower two were double, with the strands extending in different directions, 
the next two were triple, and the lowest disk of all, 2 in. from the bottom of the tank, was 
composed of six individual disks. This lower device necessarily offered large resistance to 
the passage of the gas; yet strong rebound from any part of it was prevented by the spiral 
just described. With this third arrangement, small rebound was to be expected, which also 
was borne out in practice. 

This tank was exhausted by way of a stopcock at its lower end, S; and air was also 
admitted through this same stopcock. 

The circular tank, Plate 8, Fig. 2, was 10 ft high and weighed about 200 lb. It con- 
sisted of a straight length of 3-in. pipe, carefully fitted, and welded autogenously, to a 4f t .  
3-in. U-pipe. The straight pipe entered the U-pipe on the inner side of the latter, and at as 
sharp an angle as possible. Another similar U-pipe was bolted to the first by flanges, with 
'/win. sheetrubber packing between. 

In this tank, the gases were shot down the straight pipe, entered the upper U-pipe at 



102 PRELUDE TO THE SPACE AGE 

a small angle, thus avoiding any considerable rebound, and thence passed around the 
circular part-not returning up the straight pipe until the velocity had been greatly re- 
duced by friction. 

In order to make the time, during which the velocity was being reduced, as long as 
possible, the pipes were carefully cleaned of scale. They were first pickled, and then cleaned 
by drawing through them, a number of times; first, a scraper of sheet iron; second, a stiff 
cylindrical bristle brush, and finally a cloth. All but the most firmly adhering scale was 
thereby removed. Further, care was taken to cut the hole in the rubber washers, between 
the flanges, so wide that compression by the flanges would not spread the rubber into the 
pipe and thereby obstruct the flow of gas. 

Notwithstanding all these precautions, evidence was had that the gases became stopped 
very rapidly. This was to be expected inasmuch as there is solid matter, namely, the wad- 
ding and wire, that is [26] ejected with the gas, which accumulates with each successive 
shot. This solid matter must offer considerable frictional resistance to motion along the U- 
pipe, and, since the mass of gas i s  only of the order of a gram, must necessarily act to stop 
the flow in a very short time. This interval of time was great enough, however, so that this 
second method afforded a satisfactory check upon the first method. 

A possible modification of the above two methods would have been to provide some 
sort of trapdoor arrangement whereby the gases, after having been reduced in speed in a 
container as just described, would have been prevented from returning upward into the 
3-in. pipe Pby this trap, which would be sprung at the instant of firing. In this way gaseous 
rebound would be entirely eliminated. It was found, however, that results with the two 
methods already described could be checked sufficiently to make this modification unnec- 
essary. 

The tanks were exhausted by a rotary oil pump, No. 1, of the American Rotary Pump 
Company, supported by a waterjet pump. In this way the pressure in the cylindrical tank 
could be reduced to 1.5 mm of mercury in 25 minutes and to the same pressure in the 
circular tank, in 10 minutes. The pressures employed in the experiments ranged from 
7.5 mm to 0.5 mm. 

Methods of Detecting and Measuring Gaseous Rebound 

With the two tanks used in the experiments, it was obviously impossible to eliminate 
gaseous rebound entirely, from the fact that, even if the velocity of the bases is reduced to 
zero, there still remains the effect of introducing suddenly a certain quantity of gas into 
the tank. It became necessary, then, to devise some means of detecting, and, if possible, of 
measuring, the extent of the rebound. 

Three devices were employed, one for detecting aforceof rebound, and two for mea- 
suring the magnitude of the impulse per unit area produced by the rebounding gas. These 
latter devices, from the fact that quantitative measurements were possible with them, will 
be called “impulse meters.” 

Tissue-paper Detector 

The detector for indicating the force of the rebound consisted of a strip of delicate 
tissue paper I, Plate 6, Fig. 2, and text figure 5a, 0.02 mm thick, with its ends glued to an 
iron wire W, as shown in Fig. 5a. This iron wire was fastened to the yoke Y, Plate 7,  Fig. 1, 
and held the tissue paper, with its plane horizontal, between the chamber and the wall of 
the 3-in. pipe P. In many of [27] the experiments, the paper was cut one-third the way 
across in two places before being used, as shown by the dotted lines bin Fig. 5a. Since the 
tissue paper has very little mass, the tearing depends upon the magnitude of the force that 
is momentarily applied, and not upon the force times its duration-i.e. the impulse of the 
force. The tissue paper will tear, then, if the force produced by the first upward rush of gas, 
past the chamber into the space in the 3-in. pipe above the chamber, exceeds a certain 
value. This first upward rush of gas will, of course, produce a greater force than any subse- 
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quent rush, as the gas is continually losing velocity. Even though the magnitude of the 
force that will just tear the tissue paper be not known, it may safely be assumed that if the 
first upward rush does not tear the paper, the force due to rebound that acts upon the gun 
must be small compared with the impulse produced by the explosion of the powder. 

Fig. 5 

[28] It should be noted that the tissue paper tells nothing as to whether or not there are 
a number of successive reflections or rebounds gradually decreasing in magnitude; nei- 
ther does it give information concerning the downward pressure the gases exert upon the 
chamber tending to decrease the displacement, after they have accumulated in the space 
between the top of the chamber and the cap C, Plate 6, Fig. 2. 

Direct-lift Impulse Meter 

A section of the direct-lift impulse meter is shown in Fig. 5b. It is also shown in the 
photograph Plate 6, Fig. 2, at A. A small cylinder A of aluminum of 1.46 gm mass, hollowed 
at one end for lightness, was turned down to slide easily in a glass tube G. This tube Gwas 
fastened by de Khotinsky cement to an iron wire W, which was in turn fastened to the yoke 
Y, Plate 7 ,  Fig. 1, so that the glass tube G was held in a vertical position, between the 
chamber and the wall of the 3-in. pipe-similarly to the tissue paper. Two small wires C, C 
of spring brass were cemented to the top of the aluminum cylinder, the free ends just 
touching on opposite sides of the glass tube. The inside of the glass tube was smoked with 
camphor smoke above the point marked X ,  so that a record was made of any upward 
displacement of the aluminum cylinder. The cylinder was prevented from dropping out of 
the glass tube by a fine steel wire w cemented to the tube and extending across the lower 
end. 

The theory of the direct-lift impulse meter is given in Appendix C. From the theory, 
we may derive an expression for the ratio Qof the momentum given the gun by the gas- 
eous rebound, to the observed momentum of the suspended system. 

There are two disadvantages of this form of impulse meter. First, friction acts un- 
avoidably to reduce the displacement. Second, any jar to which the apparatus is subjected 
on firing will cause the aluminum cylinder to jump, and thus give a spurious displacement. 
This latter fact rendered the meter useless for experiments in which direct lift of the cham- 
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ber took place, as there was always much jar when the heavy chamber fell back, after being 
displaced upward. 

This impulse meter, it will be observed, gave a mean measurement of any successive 
upand-down rushes of gas. 

[ 291 Spring Impulse Meter 

A section of the spring impulse meter is shown in Fig. 5c. The apparatus consisted of 
an aluminum disk D, cemented to a lead rod L, of combined mass 5.295 gm, supported by 
a fine brass spiral spring S. The disk Dwas of a size sufficient to slide easily in a glass tube G. 
The upper end of the spring protruded through a small hole in the glass tube, and was 
fastened at this point by de Khotinsky cement, it thus being easy to make the top of the 
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lead rod level with the zero of a paper scale K pasted to the outside of the glass tube. A 
piece of white paper placed behind the tube G made the motion of the lead rod L very 
clearly discernible. 

This impulse meter was placed in a hole in the upper cap of the 12-in. pipe of the 
cylindrical tank at D, Fig. 4 and Plate 8, Fig. 1, the same distance from the wall of the 12-in. 
pipe as the center of the %in. pipe. It projected 1 in. through the 12-in. cap which was 
practically the same as the distance the 3-in. pipe projected. The tube Gwas kept in posi- 
tion in the cap by being wrapped tightlywith insulating tape, thejoint being finally painted 
with the wax already described. 

The theory of the spring impulse meter is given in Appendix D, where Qis the ratio 
already defined in connection with the direct-lift impulse meter. There are two reasons 
why the ratio Qobtained in the Appendix should be larger than the true percentage at the 
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top of the 3-in. pipe. In the first place, friction in the 3-in. pipe will decrease the velocity of 
the rebounding gas; and, further, the disk D, Fig. 5, is fairly tight-fitting in the glass tube G, 
whereas there is a considerable space between the gun and the 3-in. pipe, through which 
the gas may pass and, accumulating above, exert a downward pressure on the top of the 
gun. 

One important advantage of the spring impulse meter over that employing direct lift 
is that the former has very little friction, so that the readings are very reliable. Another 
advantage is that the displacement of the former will include without any uncertainty the 
effect of any number of rebounds following one another in rapid succession-Le. the 
effect of multiple reflections of the gas, if such reflections are present. 

Explanation of Table I11 

In the vacuum experiments, the soft-steel chamber was used for Du Pont powder, 
and the nickel-steel chamber for Infallible powder. 

The three nozzles called short, medium, and long, were respectively, 9.64,15.88, and 
22.08 cm from the throat to the muzzle. 
[31] The length of chamber I, in the third column, is taken as the distance shown in Fig. 
2 a. 

In the cases of simple harmonic motion in which d, is not given in the table, the 
displacements were so large that d, was prevented from reaching its full extent by the yoke 
Y, Plate 7, Fig. 1. Correction for friction was made in these cases by choosing the decre- 
ment from some other experiment that would be likely to apply. The number of this ex- 
periment is written in parentheses, in the table, in place of d,. The same procedure is 
followed in the experiments with direct lift. 

Of the experiments in the cylindrical tank, 15 and 16 were performed with the elbow 
E, Fig;. 4, at the lower end of the 3-in. pipe; experiment 17 was performed with this elbow 
also in place, with the addition of a sheet-iron sleeve in the pipe, to decrease the curvature 
at the elbow; experiments 18 and 19 were performed with the tank empty; and the remain- 
ing experiments were performed with the fencing, already described, in position. 

The tissue paper was usually torn at one end, and not torn completely off. It was only 
torn completely off, with small charges, in the experiments with the cylindrical tank empty 
(experiments 18 and 19). The tissue paper was cut one-third across at each end, as already 
explained, in experiments 15 to 33, inclusive. 

The direct-lift impulse meter was used in experiments 15 to 26, inclusive. In cases in 
which there was impact of the chamber against the yoke, or pins, at the lower ends of the 
rods R, R, plate 6, Fig. 2, this impulse meter was useless because of the jar. Only in experi- 
ments 16 and 22 was there a measurable displacement, the negligible displacements in the 
other cases being doubtless due to friction. The spring impulse meter was used only in the 
last six vacuum experiments. 

An inspection of Tables I1 and I11 will show that the results, under the same condi- 
tions, are in sufficiently close agreement to warrant the comparison of results obtained 
under various circumstances of firing. 

Discus~on of Results 

1 .  There is a general tendency for the velocities in vacuo to be larger than those in 
air, for the same length of chamber I and the same mass of powder. 

With Du Pont powder, the medium and short nozzles give greater velocities in vacuo. 
The long nozzle, however, does not show results very much different from those obtained 
in air. 
[32] There is a large difference, however, with Infallible powder, with all three nozzles. 
For the medium nozzle a comparison of experiments 4 to 12, inclusive, with 35 and 
36 shows that the increase amounts to 22 percent of the velocity in air. 

2. The medium nozzle gives, in general, greater velocities than the abort or the long 
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nozzle with the name length of chamber 1 and approximately the same charges of powder. 
In all cases, the abort nozzle gives less velocity than the medium or the long nozzle, which 
is to be expected. 

3.  The results show no appreciable dependence of the velocities upon the pressure 
in the tank between 7.5mm and 0.5mm, and it is safe to conclude that the velocities are 
practically the same from atmospheric pressure down to zero pressure, except as regards 
the slight increase of velocity with decreasing pressure already mentioned. 

4. A comparison of the results when the chamber moved under the influence of the 
spring with those in which the chamber was merely lifted, shows that the agreement of 
results obtained by the two methods is good, provided the displacement in the direct-lift 
experiment is small (compare experiments 40 and 41 with 26). If, on the other hand, the 
displacement in the direct-lift experiment is large, this method gives considerably lesser 
velocities than 37, and 43 makes it evident that all the velocities obtained by experiments 
in which the lift exceeded 4 cm are from 300 to 600 ft/sec too small. This is a very impor- 
tant conclusion, for it means that the highest velocities in vacuo, recorded in Table 111, are 
doubtless considerably less than those which were actually attained. 

5. A comparison of the results obtained by means of the circular tank with those 
obtained by means of the cylindrical tank shows that the velocities range about 100 ft/sec 
higher for the circular tank-a difference that is so small as to be well within the accidental 
variations of the experiments. 

Concerning the behavior of the cylindrical tank under different conditions, a com- 
parison of experiments shows that the velocities are much the same for all cases. Hence it 
is safe to conclude that the rebound, at least for small charges, is not excessive even if an 
empty tank is used, providing it is sufficiently large. 

A check of some interest, on the effectiveness of the cylindrical tank, with the re- 
tarderJJ’in position inside, was the sound of the shot, which resembled a sharp blow of a 
hammer on the lower [33]  cap of the 12-in. pipe. The impart was most clearly discernible 
when the hand was on the lowest part of the tank. The sound, in the case of the circular 
tank, did not appear to come from any particular part. When the tank was grasped during 
firing, a throb of the entire tank was noticed. 

6. Concerning the proportion of the measured reaction that is due to gaseous re- 
bound, the tissue-paper detector, as has already been explained, does not give any infor- 
mation. All that this detector really shows is that the force exerted by the initial upward 
rush of gas past the chamber is not excessive. The fact that the tissue paper is sometimes 
torn and sometimes not under identical conditions of firing, shows either that this force 
differs more or less in various parts of the tank (Le., the upward rush of gas is not perfectly 
homogeneous) or that the tissue paper is weakened by each successive shot. This last ex- 
planation is the more probable; for fine particles of the wadding rush upward with the gas, 
as is proved by fine markings on the smoked glass, arid also from the fact that, after a 
number of shots, the tissue paper is found to be perforated with very small holes. 

The gaseous rebound could not be measured accurately with the direct-lift impulse 
meter. Thus of all the experiments in which this meter could be used, 15 to 26 inclusive, 
only two, 16 and 22, gave readable displacements; the failure to obtain readable displace- 
ments in the other eases being doubtless due to friction, as already mentioned. It will be 
noticed that the impulse is under 1 percent. 

The spring impulse meter used in the last five experiments gave reliable results be- 
cause of the very slight friction during operation. This impulse meter shows that, if the 
momentum of the chamber were to be corrected for gaseous rebound, this correction 
would be much less than 1 percent of the momentum of the chamber. But as has been 
stated above, the impulse of the rebound at the chamber must be less than that at the 
impulse meter, from the fact that gases may pass readily behind the chamber and exert a 
downward pressure, and also because of friction in the 3-in. pipe. The effect of gaseox 
rebound is therefore negligible, and no account of it has been taken in calculating the 
velocities and efficiencies. 

It now becomes possible to find, from the experimental results, the highest velocity 
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in vacuo upon which dependence may be placed. This is evidently the result of experi- 
ment 45 and is 2.34 km/sec or 7680 ft/sec. It is well worth noticing, however, that experi- 
ment 50 would have given, without doubt, a velocity even higher, had friction properly 
been taken into account. 

[ 341 Discussion of Possible ExpIunaEim 

1. The fact that the velocities are higher in vacuo than in air seems explicable only by 
there being conditions of ignition different in vacuo from those in air; although this may 
also have been due to the air in the nozzle interfering with the streamlines of the gas, thus 
producing a jet not strictly unidirectional. It should be remarked that the highest velocity 
in vacuo recorded, experiment 23, may have been due to unusually good circumstances of 
ignition; but it may also have been due, in part, to being performed in the circular tank. 

2. The fact that the medium nozzle gives in general velocities higher than the long 
nozzle shows that very likely after travelling the distance from the throat equal approxi- 
mately to the length of the medium nozzle, the gas is moving so rapidly that it fails to 
expand fast enough to fill the cross section of the nozzle. A discontinuity in flow is pro- 
duced at the place where the gas leaves the wall of the nozzle, and this produces eddying 
and a consequent loss of unidirectional velocity. The efficiency could doubtless be in- 
creased by constructing the nozzle in the form of a straight portion, corresponding to a 
cone of 8’ taper, for the length of the medium nozzle with the section beyond this point in 
the form of a curve concave to the axis of the nozzle. 

Conclus imf im Experiments 

1. The experiments in air and in vacuo prove what was suggested by the photographs 
of the flash in air, namely, that the phenomenon is really a jet of gas having an extremely 
high velocity and is not merely an effect of reaction against the air. 

2. The velocity attainable depends to a certain extent upon the manner of loading, 
upon the circumstances of ignition, and upon the form of the nozzle. Hence, in practice, 
care should be taken to design the cartridge and the nozzle for the density of air at which 
they are to be used, and to test them in an atmosphere of this particular density. 

It is with pleasure that the writer acknowledges the use, as honorary fellow in physics, 
of the laboratory facilities, and especially the rotary pump, at the Physics Laboratory at 
Clark University where these experiments were performed. 

Significunce of the Above Experiments as Regards Constructing a PracCicul Apparatus 

It will be well to dwell at some length upon the significance of the above experi- 
ments. In the first place, the lifting power of both [35] powders is remarkable. Experiment 
51 shows, for example, that 42 Ib can be raised 2 in. by the reaction from less than 0.018 lab 
of powder. One interesting result is the very high efficiency of the apparatus considered as 
a heat engine. It exceeds, by a wide margin, the highest efficiency for a heat engine so far 
attained-the “net efficiency” or duty of the Diesel (internal-combustion) engine being 
about 40 percent, and that for the best reciprocating steam engine but 21 percent. This 
high efficiency is, of course, the result of three things: the absence of much heat loss due 
to the suddenness of the explosion; the almost entire absence of friction; and the high 
temperature of burning. Owing to these features, it is doubtful if even the most perfect 
turbine or reciprocating engine could compete successfully with the type of heat engine 
under consideration. 

It is, however, the velocity c in Eqs. (6) and (7) which is of the most interest. The 
highest velocity obtained in the present experiments is 13 ft/sec under 8000 ft/sec, thus 
exceeding a mile and a half per second (the “parabolic velocity” at the surface of the 
moon), and also exceeding anything hitherto attained except with minute quantities of 
matter by means of electrical discharges in vacuum tubes. Inasmuch as the higher veloci- 
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ties range between seven and eightfold that of the Coston rocket, we should expect a 
reduction of initial masses to be made possible by employment of the steel chamber, to at 
least the seventh root of the masses necessary for a chamber like the Coston rocket. 

The supposition is, of course, that the mass of propellant material can be made so 
large in comparison with the mass of the steel chamber, that the latter is comparatively 
negligible. N o  attempt was made in the present experiments to reduce the chamber to its 
minimum weight; in fact, the more massive it was, the more satisfactorily could the ballistic 
experiments be performed. The minimum weight possible, for the same thickness of wall 
as in the experiments, was calculated by estimating, first, the volume of a chamber from 
which all superfluous metal had been removed, as shown by the full lines in Fig. 3, and 
then calculating the mass of this reduced chamber, from the measured density of the steel. 
The minimum masses of chamber per gram of powder plus wadding, estimated in this way, 
were 145, 150, and 120 gm, respectively, for experiments 50, 51, and 52. In the last two 
cases, a smaller breechblock could doubtless have been used, as evident from Fig. 3; and in 
the first two cases, the chamber wall, itself, could safely have been reduced in thickness. 
More important still, a “built-up” construction would much reduce the mass as has already 
been explained. 
[36] It should be mentioned that, for any particular chamber, itwill be necessary to deter- 
mine the maximum possible powder charge to a nicety, from the fact that, as modern rifle 
practice has demonstrated, one charge of dense smokeless powder may be perfectly safe 
for any number of shots, whereas a slightly larger amount, or the same amount slightly 
more compressed (a state in which the powder must exist in the present chamber) will 
result in very dangerous pressures. 

But the whole question of ratio of mass of powder to chamber is without doubt rela- 
tively unimportant for the following reason: The photographs of the flash, in experiments 
9 and 11, in which the flash was accidentally reflected in the nozzle of the gun, show the 
nozzle appearing stationary in the photograph, thus demonstrating that the duration of 
the flash is very small; but this, as already explained, is much longer than the time during 
which the gases are leaving the nozzle. The time of firing is, therefore, extremely short. 
This is to be expected, inasmuch as the high pressure in the chamber sets in motion only 
the small mass of gas and wadding, and hence must exist for a much shorter time than the 
pressure in a rifle or pistol. For this reason the heat that is developed in the machine gun, 
due to the hot gases remaining in the barrel for an appreciable time during each shot, as 
well as that due to the friction of the bullet, will be absent in the type of rapid-fire mecha- 
nism under discussion. Hence, a large number of shots, equivalent to a mass of powder 
greatly exceeding that of the chamber, may be fired in rapid succession without serious 
heating. “ 

[371 

Aplblicution of Approximate Method 

Part 111. Calculations Based on Theory and Experiment 

As already explained this method consists in employing the equations and 

and 

at e- 
c(1-k)  

M =  

to obtain a minimum M in each interval, where 

(7) 

M = The initial mass, for the interval, when the final mass is one pound, and 
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R =  

a =  

g =  

c(1-k) = 
t =  
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the air resistance in poundals over the cross section S, at the altitude of the 
rocket. Ifwe call Pthe air resistance per unit cross section, we shall have for R, 
PS(p/pJ where p is the density at the altitude of the rocket, and to is the 
density at sea level. 
the acceleration in feet per second’, taken conatant throughout 
the interval, 
the acceleration of gravity, 
the time of ascent through the interval, arid 
what will be called the “effective velocity,” for the reason that the problem 
would remain unchanged if the rocket were considered to be composed 
entirely of propellant material, ejected with the velocity c(1-k). It will be re- 
membered that cactually stands for the true velocity of ejection of the propel- 
lant, and k for the fraction of the entire mass that consists of material other 
than propellant. The effective velocity is taken constant throughout any one 
calculation. 

The altitude is divided into intervals short enough to justify the quantities involved 
in the above equations being taken as constants. The equations are then used to find the 
minimum value of Mfor each interval-the mean values of R and g, in the interval being 
employed-and the “total initial mass required to raise a final mass of one pound to a 
desired altitude is then obtained as the product of these Mi. 

[ 381 Values of the Quuntitks Occurring in the Equations 

The effective velocity c( 1-k) . The calculation which follows has been carried out with the 
a~sumption’~ of a velocity of ejection of 7500 ft/sec and a constant k equal to ‘/ i5.  This 
velocity is considerably less than those that were actually obtained, both in air and in vacuo. 
The “effective velocity” will thus be 

c( 1-k) = 7000 ft/sec 

It should be noticed that k could be l / i z  and yet not necessitate a larger velocity of 
ejection than 7640 ft/sec, which is also under the highest velocities obtained in the experi- 
ments. It is important at this point to remember that the velocities in vacuo would doubt- 
less have been found to be considerably higher than the above value, if friction could have 
been eliminated in the “direct-lift’’ method. 

The quality R The mean value of R for any interval is most easily obtained from a 
graphical representation of P as a function of v, the mean value of P between the begin- 
ning and end of the interval being taken. Three curves have been used for this purpose: 
for velocities ranging from zero to 1000 ft/sec, 1000 to 3000 ft/sec, and from 3000 ft/sec 
upward. The first curve represented the experimental results of A. Frank’ obtained with 
prolate ellipsoids. The second curve represented the experimental results of A. Mallock,’ 
whereas the third curve represented an empirical formula by Mallock: which agrees well 
with experimental results up to 4500 ft/sec-the highest velocity that has been attained by 
projectiles-and hence may be used for still higher velocities with a fair degree of safety. 
Mallock’s expression, reduced to the absolute fps system and multiplied by ‘1’4, the coeffi- 
cient for projectiles with pointed heads, becomes 

0.375 

P=0.00006432u2[~] +480 

3 A. Frank, Zeitschl: Verein Deutsches Ing. 55. pp. 593-612, 1906. 
4 A. Mallock, Proc. Roy. Sac. 79A. pp. 262-273, 1907. 
5 A. Mallock, Proc. f Z q .  Sac. 79A. pp. 267, 1907. 
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where v‘= the velocity with which a wave is propagated in the air immediately in front of 
the projectile; which equals the velocity of the body when that velocity exceeds 
the velocity of sound in the undisturbed gas 

a= the velocity of sound in the undisturbed gas 

The constant, 480 poundals, must be added for velocities over 2400 ft/sec owing to the 
vacuum in the rear of the projectile. 
[39] The quantztyp. The above expression ( 8 ) ,  for the resistance, holds only at atmospheric 
pressure. At high altitudes the pressure, of course, decreases greatly. If we call p the mean 
density throughout any interval of altitude, and p ,  the density at sea level, the right mem- 
ber of (8). On being multiplied by Sand p / p ,  will give the air resistance R experienced by 
the rocket. 

A curve representing the relation between density and altitude up to 120,000 ft is 
shown in Fig. 6. This curve is derived from a table of pressures and temperatures in 
Arrhenius’s Lebrbuch der kosmischen Physik. The ordinates of the curve are the numbers 

Beyond 120,000 ft the density is calculated by the empirical rule which assumes the 
density to become halved at every increase in altitude of 3.5 miles. A comparison was made 
between two values obtained in this way and those obtained from the very probable pres- 
sures deduced by Wegener, in the following way: The mean density between two levels for 
which Wegener gives pressures was obtained by multiplying the difference in pressure by 
13.6, and dividing by the difference in level in centimeters. A comparison showed that the 
densities used in the present calculations beyond 123,000 ft were from three- to twentyfold 
larger than those derived from Wegener’s data, so that the values used in the present case 
were doubtless perfectly safe. 

Densities beyond 700,000 ft within the geocoronium sphere must be negligible, for 
not only is the density very small but the resistance to motion is very small-due, accord- 
ing to Wegener, to the properties of geocoroniesio-a conclusion which is supported by 
the fact that meteors remain, for the most part, invisible above this level. 
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[ 401 Division of the Altitude into Zntauals 

In dividing the altitude into intervals the only condition that must be fulfilled is that 
the densities in a n y  interval shall not differ widely from the mean value in the interval. 
The least number of intervals which satisfy this condition are given in Table IV. The mean 
densities in intervals sI to s, inclusive, were obtained from Fig. 6, on which these intervals 
are marked. The remaining densities were estimated as already explained. 

Table IV 

Interval Length of 
interval, ji 

5,000 
10,000 
10,000 
20,000 
40,000 
40,000 
75,000 

300,000 
3,415,000 
8,810,000 

Height of upper 
end of interval 
above sea h e l ,  

ji 

5,000 
15,000 
25,000 
45,000 
85,000 

125,000 
200,000 
500,000 

3,915,000 
9,310,000 

Mean density 
in terms of p ,  

0.928 
0.730 
0.520 
0.278 
0.080 
0.015 
0.0026 
0.000025 
- 
- 

Mean 
gravity 

chosen, in  

gravity at 
sea leuel 

- of 
1 
1 
1 
1 
1 
1 
1 
1 

0.839 
0.684 

Calculation of Minimum Mass for Each Intaual 

Tables V and VI are calculated for a start, respectively, from sea level and from an 
altitude of 15,000 ft-Le., the beginning of s,. The procedure in each case is, however, 
identical. 

The process of calculation is as follows: At the beginning of any interval we have the 
velocity already acquired during the previous intervals, let us say vo. This velocity is, of 
course, zero at the beginning of the first interval. Assume any final velocity at random, v, 
for the interval in question. 
[41] The value of at may be had from the equation 

v, = v, + at (9) 

and tis at once obtained from the relation 

s=v,t+'/nae 
i.e., 

whence, of course, a is at once known. 

The calculation of 
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n. t 
exp - a+g t and exp- 

c ( 1 - k )  c (1 -k )  

calls for no comment; and Ris obtained as P, the mean ordinate between v,, and vI ,  from 
curves as already explained, multiplied by Sand p/p,,. 

The value of M, the initial mass, for the interval, necessary in order that the final 
mass in the interval shall be one pound, is then obtained from Eq. ( 7 ) ;  and finally, the 
ratio of Eq. (6) to Eq. (7) is calculated, i.e., 

M 
exp [a t  / c( 1 - k ) ]  

This is the ratio of the initial mass necessary, including losses due to both R and g, to the 
mass necessary to give the one pound the same velocity v l ,  without overcoming R and g, 
and the entire calculation must be repeated until a minimum value of this ratio is ob- 
tained-when the corresponding mass M will be the minimum mass for the interval in 
question. Each minimum Mis marked in the tables by an asterisk. 

This process is carried out for each interval beginning with the first. 
It should be noticed that, although Pand the density are not really constant in any 

interval, the result obtained by taking the mean of the quantities must nevertheless give 
results close to the truth, owing to the fact that Pincreases during the ascent, whereas the 
density decreases. 

Explunution of Tables and v7 

It should first be explained why no minimum M has been calculated for the intervals 
s,, and sa. Although the minima for the preceding intervals are clearly defined, a trial will 
show that a minimum M can occur, for s, and s,, only for extremely high velocities v,; 
although for s,, a secondary minimum occurs for u, = 8000 ft/sec. Even for v1 = 30,000 ft/ 
sec the minimum has not yet been attained for this interval, although the acceleration 
required to produce this velocity is 6000 ft/sec2. The reason for this state of affairs is evi- 
dent at once from the fact that the density ratio p/po is very small for s,, and also from the 
fact that a occurs in the denominator of the term containing Rin Eq. (6),  so that the large 
acceleration counterbalances the increase in R 

Thus, in order that the initial mass for s,, shall be a minimum, the acceleration must 
become very large, with consequent severe strains in the rocket apparatus and instruments 
carried by the rocket, to say nothing of the difficulty of firing with sufficient rapidity to 
produce such large accelerations. It thus becomes advisable to choose a moderate accel- 
eration in s,, sa and not to assign a velocity vl ,  as was done in the preceding intervals. Two  
accelerations are chosen: 50 ft/sec2 and 150 ft/sec2, respectively. The interval k, also calcu- 
lated for assigned accelerations, will be explained in detail below. In all cases, when either 
one of these accelerations is mentioned in connection with sa, and k, this acceleration will 
be understood as having been taken also in the preceding intervals, beyond s. 

In order to see how far the effective velocity c(1-k) may fall short of 7000 ft/sec and 
still not render the rocket impracticable, a few additional columns for Mare calculated. 

In the first of the additional columns, M,, the effective velocity is taken as 3500 ft/ 
sec, namely, half that of the preceding calculations. This allows considerable inefficiency 
of the apparatus, in a number of ways. For example, the product 

~ ( 1 - k )  = 3500 

may be given by the same proportionality k as before, but with a velocity of ejection of the 
gases as low as 3750 ft/sec. On the other hand, the velocity of ejection may be as large as 
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before (Le., 7300 ft/sec); and the proportionality kincreased to 0.533; meaning, of course, 
that the rocket now consists more of mechanism than of propellant. 

The second additional calculations M,, are cexp d out under the assumption that a 
reloading mechanism is used, with k as in the original calculations (k = ' /15), but that the 
velocity of expulsion of the gases is the mean found by experiment for the Coston ship 
rockets, namely, 1029.25 ft/sec. In this case the effective velocity is 

c( 1 4 )  = 1029.25 (1- '/15) = 960.ft/sec 

The third additional calculations M, are carried out for the case of a rocket built up 
of Coston rockets in bundles (shown in Fig. 7), the lowest bundle ofwhich is fired first and 

Table V 
- 

R 

a + g  
- 

- 
120 
193 
219 
323 
,378 
,436 

exP 
at 

c(1-k)  
- 
- 
1.074 
1.120 
1.153 
1.185 
1.242 
1.332 

=P 

c ( 1 - k )  

1.176 
1.186 
1.207 
1.235 
1.276 
1.362 

d 
poundals 
per sq in. 

7.36 
20.0 
31.25 
61.4 
104.6 
202.5 

15 
PS(P/PO) 

6.85 
18.5 
29.0 
57.0 
98.0 
188.0 

utr 
ft /sec 

500 
800 

1,000 
1,200 
1,500 
2,000 

- 

f, 
scc 

- 
20.0 
12.5 
10.0 
8.34 
6.7 
5.0 

at 
c ( 1 - k )  
- 

- 
0716 
1145 
143 
172 
215 
287 

o+gf 

.1630 

.1720 
,1890 
.212 
,2475 
.309 

c(1-k)  
- 

Infcrval Uf 

- 
500 
800 

1,000 
1,200 
1,500 
2,000 

a 

- 
25 
64 

100 
144 
226 
400 

Sl 

* 

s, * 
1,100 
1,200 
1,400 

100 
200 
400 

9.54 
9.1 
8.33 

10.4' 
22.0 
47.9 

0143 
0286 
0574 

.0578 

.0704 

.0954 

1.014 
1.034 
1.060 

1.061 
1.073 
1.100 

153.3 
166.6 
216.0 

112.1 
121.6 
158.7 

2.64 
1.24 
1.97 

2.925 
2.37 
1.74 

- 

* s, 1,300 
1,400 
1,600 

100 
200 
400 

8.0 
7.7 
7.15 

12.5 
25.8 
56.4 

7.23 
15.0 

33.2. 

- 

23.2, 

0143 
0286 
0574 

.0508 

.0637 
,0906 

1.014 
1.034 
1.06 

1.052 
1.066 
1.096 

250.0 
262.8 
294.5 

130.0 
136.9 
152.6 

1,500 
1,600 
1,700 
1,800 

100 
200 
300 
400 

13.8 
13.32 
12.9 
12.5 

0143 
0286 
0429 
0574 

.0775 

.OB98 

.lo22 

.1170 

1.014 
1.034 
1.046 
1.060 

1.080 
1.094 
1.107 
1.123 

339.0 
372.0 
394.0 
424.0 

94.3 
101.5 
109.4 
118.0 

2.42 
2.17 
1.975 
1.81 

s4 * 

5 * 
1,700 
1,800 
2,000 

100 
200 
400 

24.21 
23.7 
22.24 

4.12 
8.45 
18.0 

0143 
0286 
0574 

,1258 
.1366 
,159 

1.014 
1.034 
1.06 

1.133 
1.146 
1.173 

439.0 
480.0 
535.0 

35.1 
38.4 
42.8 

,974 
,951 
,854 

s, * 1,900 
2,000 
2,200 

100 
200 
400 

21.7 
21.1 
20.0 

21.0 
27.8 

- 

4.62 
9.50 
20.0 

0143 
,0286 
,0574 

.I135 

.1255 
,1490 

1.014 
1.034 
1.06 

1.12 
1.133 
1.16 

567. 
603. 
669. 

1,878. 
1,122. 

8.50 
9.01 
10.02 

,232 
2175 
,1923 

.0264 
,0355 

- 
+(a= 150: 
(a= 50: 

5,160 
3,393 

3,160 
1,393 

150 
50 

,4523 
,199 

.5452 
,3276 

.976 
,652 

- 
1.572 
1.218 

1.725 
1.387 

4.84 
3.1 

%(,(a= 150: 
(a= 50: 

10,791 
6,833 

5,630 
2,840 

37.5 
55.8 

150 
50 

,804 
,399 

3.29 
3.38 

- 

- 

2.23 
1.49 

2.65 
1.92 

10,600 
4,000. 

0.272 
0.0994 

,00146 
,00121 

%(a= 150 
(a= 50: 

33,791 
30,53 - 

23,001 
23,701 - 

153.! 
472.! - 

150 
50 - 

3.89 
4.85 - 

26.9 
29.13 - 

48.8 
129.0 
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M/exp 
a1 

c ( l - k )  

then released; after which the bundle above is fired and then released, and so on. For the 
Coston ship rocket (having a range of a quarter of a mile, with the charge of red fire 
removed, as already stated) the ratio of the powder charge to the remaining mass of the 
rocket is found to be closely '/4. Hence the "effective velocity" in this case is only 

c( 1 4 )  = 1029.25( 1-*/5) = 257.3 ft/sec 

exp 
~- 2 ( a + d 1  M, 

c ( l - t )  lb 

The M's in the last two cases are calculated only for the accelerations that make M 
minima for the first case (effective velocity, 7500 ft/sec) . Hence in these cases, the M's are 
not minima, although only in the last two cases is there probably much discrepancy from 
the actual minima. 

exp 
7.28(a+g) 

c ( l - k )  
M. 
ib 

exp 
MR,> 27.2(a+g) I 

lb c ( l - k )  

1.1972 
1.2218 
1.252 
1.311 
1.380 
1.5195 

1.113 
1.092 
1.086 
1.106 
1.112 
1.138 

1.206 
1.199 
1.223 

1.186 
1.182 
1.191 

1.255 
1.253 
1.26 
1.267 

1.245 
1.242 
1.246 

1.13 
1.123 
1.124 

1.222 
1.237 
1.297 

1.458 1.5584 

1.150 1.4860 

1.137 1.462 

1.198 1.626 

1.313 1.711 

1.280 1.3406 

1.204 
1.222 
1.261 

1.589 

1.92 

2.694 

2.488 

1.273 
1.297 
1.319 
1.346 

1.262 
1.2845 
1.321 

2.974 5.62 

3.91 11.33 

4.304 40.70 

2.810 29.76 
1.1478 
1.162 
1.1907 

1.7442 
1.4007 

2.6524 
1.9211 

48.8 
129.0 

1.108 
1.15 

1.19 
1.293 

2.97 3.022 
1.900 1.9319 

7.02 7.0288 
3.680 3.6832 

2,380.0 2,380.0 
16,700.0 16,700.0 

52.6 
10.79 

117.4 
1,192.0 

1,906 x 10" 
1,995 x 10" 

53.96 2.63 x 10' 
11.13 7.03 x io3 

1,193.7 2.88 x 10" 
117.54 4.67 x 10' 

1,906 x 10" 5.74 x 
1,995 x 10" 1.25 x lo5' 

203.90 

20.60 

16.52 

33.73 

88.45 

36.02 

2.70 x 10' 
7.28 x io3 

2.88 x 10" 
4.67 x 10' 

5.74 x 104j 
1.25 x 10j7  

7ime 1" 

upper end 
of 

tnrerva1, 

rec 

10.0 

19.1 

26.8 

- 

10.13 

- 

63.83 

- 

84.93 

105.93 
112.73 

143.43 
168.53 

- 

296.93 
641.03 
- 
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38.1 
36.5 
34.75 
33.3 
32.1 
26.1 

The cross section, throughout any interval, is taken as 1 sq in, except for interval sg. It 
will be seen from the table that this isjustifiable, as the largest mass in intervals s, to s, does 
not differ much from one pound. 

2.625 
5.47 
8.64 

12.0 
15.60 
21.40 

27.7 
25.7 
25.0 
24.2 
23.6 
22.8 

10.8 
19.5 
24.0 
28.9 
33.8 
40.0 

Fig. 7 

Table VI 

exP 

c ( 1 - k )  

exP 

c ( 1 - k )  
at - a1 - 

c ( 1 - k )  
a+gI 
c ( 1 - h )  

Interua, 

- 
s, * 

af 

500 
800 

1,000 
1,500 

500 
800 

1,000 
1,500 

0.0715 
0.1147 
0.142 
0.2145 

1.074 
1.120 
1.152 
1.24 

1.013 
1.034 
1.073 
1.152 

0.205 
0.2277 
0.235 
0.277 

0.1227 
0.1305 
0.1645 
0.2136 

1.29 
1.256 
1.263 
1.318 

1.132 
1.137 
1.177 
1.238 

50.0 

23.7 4.23 
9.00 

900 
1,000 
1,300 
1,800 

100 
200 
500 

1,000 

0.0143 
0.0286 
0.0714 
0.1430 

I 

1,100 
1,200 
1,300 
1,400 
1,500 
2,000 

100 
200 
300 
400 
500 

1,000 

0.1888 
0.1960 
0.202 
0.210 
0.2192 
0.268 

1.207 
1.215 
1.223 
1.233 
1.245 
1.308 

s, * 
0.0124 
0.0286 
0.0430 
0.0571 
0.0715 
0.1147 

0.0430 
0.0714 
0.0857 
0.1002 
0.1142 
0.1285 

1.013 
1.03 
1.044 
1.058 
1.073 
1.12 

1.045 
1.074 
1.091 
1.105 
1.118 
1.124 

'6 

* 

1,600 
1,800 
1,900 
2,000 
2,100 
2,200 

300 
500 
600 
700 
800 
900 

0.1690 
0.1890 
0.201 
0.212 
0.224 
0.237 

1.184 
1.206 
1.223 
1.234 
1.249 
1.266 



EXPLORING THE UNKNOWN 117 

R, 
Ps(P/PJ 

5.97 
16.00 
24.3 
83.3 

27.7 
31.4 
46.25 
87.90 

12.0 
13.55 
15.65 
17.49 
19.45 
33.4 

Calculation of Minimum Mass to Raise One Pound to Various Altitudes in the Atmosphere 

The “total initial masses” required to raise one pound from sea level to the upper 
end of intervals s,, s,, s, are given its Table VI. They are obtained by multiplying together 
the minimum masses (marked by stars in Table V), from s, up to and including the interval 
in question, and represent, as already explained, the mass in pounds of a rocket which, 
starting at sea level, would become reduced to one pound at the altitude given. 

The highest altitude attained by the one pound mass is not, however, the upper end 
of the interval in question, but is a very considerable distance higher. This, of course, 
follows from the fact that the one pound teaches the upper end of each interval with a 
considerable velocity, and will continue to else after propulsion has ceased until this veloc- 
ity is reduced to zero, by gravity and air resistance. 

If we call v, the velocity with which the pound mass reaches the upper end of the 
particular interval where propulsion ceases, b the distance beyond which, the one pound 
will rise (the cross section still being 1 sq in.), and p the mean air resistance in poundals 
[47] over the distance 6, we have, by the principle of work and energy, 

R - 
a+g 

0.134 
0.250 
0.295 
0.570 

0.764 
0.767 
0.794 
0.908 

0.347 
0.362 
0.384 
0.397 
0.520 
0.623 

The values of p are small, owing to small atmospheric density being 1.59 poundals for 
the b beyond $; 0.28 beyond s, (-50) ; and 0.465 beyond s, ( ~ 1 5 0 ) .  For s, the low density 
makes this quantity negligible. 

The altitudes obtained by adding to the interval the corresponding bare called the 
“greatest altitude attained” in Table VII. 

[461 

5.16 
6.10 
6.43 
6.90 
7.65 
8.02 

I: 
poundals 
per sq in. 

0.1203 
0.1186 
0.1150 
0.1134 
0.1165 
0.1115 

11.53 
30.7 
46.7 

165.0 

95.7 
108.8 
165.0 
305.0 

150.1 
170.0 
195.0 
218.0 
243.5 
417.0 

343.0 
406.0 
430.0 
460.0 
510.0 
534.0 

M? 
lb 

1.329 
1.300 
1.341 
1.499 

1.232 
1.242 
1.318 
1.455 

1.278 
1.293 
1.306 
1.325 
1.372 
1.501 

1.206 
1.230 
1.248 
1.260 
1.278 
1.295 

1.140 I 1.522 1 1.581 1 4.66 1 5.075 
1.142 
1.151 
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c( 1 - k)  
= 7,000 

3.665 

5.14 
6.40 

9.875 
12.33 

1,274.0 
602.0 

Obviously if the start is made at a high elevation, the “total initial mass” required to 
reach a given height will be less than for a start at less level, due not only to the fact that the 
apparatus is not raised through so great a height, but also to the fact that the denser part 
of the atmosphere is avoided. Table VI gives minimum masses M ,  calculated for a start with 
zero velocity from the beginning of interval s, (Le., 15,000 ft), the effective velocity being 
7000 ft/sec, as in Table V. 

It happens that the velocity u,, for minimum M in the interval s, of Table VI is the 
same as the u, for the same interval in Table V. The calculations that have been made for 
the intervals beyond s, apply therefore to the present case, and the only difference be- 
tween the two cases is that the masses required to reach s, will be greater for the start at sea 
level than for the start at 15,000 ft. 

The calculations beginning at 15,000 ft have been carried out in Table VI1 for all but 
the lowest “effective velocity;” and it will be observed that the start from a high elevation 
becomes important only for the lower “effective velocities.” 

The most striking as well as the most important conclusion to be drawn from Table 
VI1 is the small “total initial mass” required to raise one pound to very great altitudes when 
the “effective velocity” is 7000 ft/sec, the mass for the height of 437 miles (2,510,000 ft), 
for example, being but 12.33 lb, starting from sea level. Even for an “effective velocity” of 
3500 ft/sec, which allows of considerable inefficiency in the rocket apparatus, the mass is 
sufficiently moderate to render the method perfectly practicable, for in this case an alti- 
tude of over 230 miles from sea level, practically the limit of the earth’s atmosphere, re- 
quires under 90 lb’,; and an altitude of 118 miles, close under the geocoronium sphere, 
only 38 lb. For a start at 15,000 ft, the masses are, of course, less, namely, 49.3 lb and 
20.9 lb, respectively.” 
[48] The enormous difference between the total initial masses required for low efficiency 
rockets compared with those for high, may at first appear surprising; but they should be 
expectedfrom the exponential nature of Eqs. (6) and (7). Thus if the “effective velocity” is 
reduced from 7000 ft/sec to half this value, the minimum masses for each interval, ne- 
glecting air resistance, will be those for 7000 ft/sec squared; and including air resistance, 
still greater. Similarly for an effective velocity of 906 ft/sec which is that for reloading 

c( 1 - k )  
= 3,500 

12.61 

24.36 
38.10 

89.60 
267.70 

1.497 x lo6 
6.37 x lo5 

Altitude 
of upper end 
ofintervd, ji 

s, (a=  50) 
( a =  150) 

$ ( a =  50) 200,000 
( a =  150) 200,000 

s, ( a =  50) 500,000 + ( a =  150) 500,000 

9,310,000 
3,915,000 

Greatest 
altitude 
attained, ji 

184,100 

377,500 
610,000 

1,228,000 
2,310,000 

00 

m 

Time to reach 
Fatest altitude 
i-om sea leuel, sei 

144.13 

217.73 
265.93 

380.53 
475.23 

00 

m 

Table VI1 

Total initial m s e s  (in lb) 
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C( 1 - k)  
= 960 

rockets having the same velocity of ejection as Conton ship rockets, the minimum masses 
will be those for 7000 ft/sec raised [49] to the 7.28th power; and for bundles for groups of 
ship rockets, as shown in Fig. 7, the minimum masses will be those for 7000 ft/sec, raised to 
the 27.2th power. Even when air resistance is entirely neglected in the calculation for the 
last case, the masses are of much the same magnitude, as shown in Table VII. The large 
values of the masses M,,, and Mm, simply express the impossibility of employing rockets of 
low efficiency. Attention may be called to the particular case under M, (the groups of slip 
rockets indicated in Fig. 7) in which one pound is raised to the altitude of 1,228,000 ft 
(232 miles); the “total initial mass” in this case, even neglecting air resistance entirely, is 
2.89 x 1018 lb, or over sixfold greater than the entire mass of the earth. 

These large numbers, to be sure, agree with one’s first impression as to the probable 
initial mass of a rocket designed to reach extreme altitudes; but the comparatively small 
initial masses, possible with high efficiency, are not intuitively evident until one realizes 
what an enormous reduction is involved in extracting anything at large as the 27th root of 
a number. 

It should be observed that the apparatus is taken as weighing one pound. Strictly 
speaking, if the recording instruments have a mass of one pound, the entire final mass of 
the apparatus must be at least 3 or 4 lb. The mass for the recording instruments may be 
considered as being very small, yet many valuable researches could, of course, be per- 
formed with an apparatus weighing no more than this.’* The entire final apparatus should, 
if possible, be designed to weigh not over 3 or 4 Ib at most, unless the efficiency of the 
apparatus is so high that the “effective velocity,” c ( e k ) ,  is at least in the neighborhood of 
7000 ft/sec. An examination of Table VI1 makes very evident the necessity of securing 
maximum effectiveness of the apparatus before a rocket for such a purpose as meteorologacal work, /or 
example, is constructed; in order to make the method as inexpensive as possible. It should be re- 
marked, however, that the “total initial mass” will really not be increased in as large a 
proportion as the final mass if the latter is made greater than one pound by virtue of Eq. (2). 

Before proceeding further it will be well to consider carefully the question of air 
resistance as dependent upon the cross section of the rocket during flight. It has already 
been assumed that the cross section, in the calculation of the minimum M for each 

C( 1 - k )  
= 257.3 

f i  one pound jinal muss 

C (  1 - k )  
= 257.3 

R t a k a = O  

)om sea level SturtinglFfom 15,000ft I 
C( 1 - k )  
= 7,000 = 3,500 = 960 

C( 1 - k )  C( 1 - k)  

2.66 x l o6  
1.318 x 10’ 

2,030.0 

2.26 x 104 5.46 x 10’’ 

2.55 x ioi9 
5.77 x loz6 

5.32 x loz1 
2.49 x lom 

3.21 x 
3.32 x lo7’ 

8.63 x 10’ 702.0 

6.08 x 10” 13.38 7,820 
2.28 x 10l4 20.90 37,800 

2.89 x 10” 7.19 49.30 9.17 x io5 
6 . 5 3 ~  10” I 8.97 1 147.30 1 4.51 x io7 

3.63x 1075 I m:; I 8.22 x lo5  1 1.82 x 10” 
3.76 x 3.51 x l o5  8.59 x 10” 
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Interval, was 1 sq in. If we make the apparatus as long, narrow, and compact as possible, 
the assumption of a cross section of 1 sq [50] in. for an apparatus weighing one pound will 
not be unreasonable. A glance at Tables V and VI will show that, for “effective velocities” of 
7000 ft/sec and 3500 ft/sec, the mass at the beginning of any interval (except %) does not 
greatly exceed one pound-the mass at the end of each interval being one pound-so that 
the computations are in agreement with this assumption of area of cross section. For the 
two cases of the adapted Coston rockets, the masses at the beginning of the intervals are 
much larger; and hence we see that the “total initial masses’’ in Table VII, large as they are, 
would have been even larger if a proper value of cross section had been employed. 

The important point is, however, that cross-sectional areas of men Zess than 1 sq in. 
should have been used. The reason for this is obvious when one remembers that in calculat- 
ing the “total initial masses,” when we multiply minimum masses M together, we are also 
multiplying the cross sections in the same ratio. In other words, we are considering num- 
bers of rockets, each of 1 sq in. cross section, grouped together side by side, into a bundle. 

But such an arrangement would have its cross section proportional to its mass and 
not to the 7s power of its mass, as would be the case if the shape of the rocket apparatus were at 
all times similar to the shape at the start (as in the ideal rocket, Fig. 1) .  This constant similarity 
of shape is, as we have seen in Eq. (2), one of the conditions for a minimum initial mass. 
Hence the “total initial masses” that have been calculated are really larger than the true 
minima, which would be obtained only by repeating the calculations, assuming a smaller 
cross section except in the last few intervals, in which the rocket has become so small that 
the condition of 1 sq in. per pound is approximately satisfied. 

Before leaving the subject of air resistance, attention should be called to the fact that the 
velocities (Table V) do not exceed that for which air resistance has been studied by Mallock 
until in s,, for a = 150 ft/sec2, and in %, for a = 50 ft/sec2; and furthermore, that the velocities do 
not become much in excess until the densities have become almost negligible. 

Check m Approximute Method of calculation 

A simple calculation, involving only the most elementary formulas instead of Eqs. 
(6) and (7, will show that the “total initial masses” in Table VI1 cannot be far from the 
truth. 

Consider, for simplicity, a rocket of the form shown in Fig. 1 ,  and suppose that one- 
third of the mass of the rocket is fired downward, [51] with a velocity of 7000 ft/sec at the 
first shot; one-third of the remaining mass, at the second shot; and so on, for successive 
shots. From the principle of the conservation of momentum it will be evident that the 
mass that remains is given an additional upward velocity of 35000 ft/sec after each shot. 

Thus, after the fourth shot, the mass that remains is I6/8i, of practically l/5, of the 
initial mass, and the velocity is 14,000 ft/sec. This velocity is sufficient, if we neglect air 
resistance, to raise the part of the rocket that remains to an altitude of 580 miles (by the 
familiar relation d=2gh). Although the range would be much reduced if air resistance 
were considered, it should nevertheless be remembered that the values in Table VI1 are 
calculated for the condition under which air resistance is a minimum. 

The above simple case is not realizable in practice because of the large mass of pro- 
pellant for each shot compared with the total mass-i.e., provision is not made for the 
mass of the chamber. The result will be the same, however, if smaller charges are fired in 
rapid succession, as will be evident from a calculation similar to the above, which is carried 
out in Appendix E, under the assumption of smaller charges for successive shots. 

Recovery of Apparatus on Return 

A point of considerable practical importance i s  the question of finding the apparatus 
on its return, and of following it during flight, both of which depend in a large measure 
upon the time of flight. 

Concerning the times of ascent, Table VI1 shows that these are remarkably short. For 
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example, a height of over 250 miles is reached in less than 6 '/z minutes (sa; a= 50). The 
reason is, of course, that the rocket under present discussion possesses the advantage of 
the bullet in attaining a high velocity, with the added advantage of starting gradually from 
rest. In fact, the motion fulfills closely the ideal conditions for extremely rapid transit- 
namely, starting from rest with the maximum acceleration possible, and reversing this ac- 
celeration, in direction, at the middle of the journey. 

The short time of ascent and descent is, of course, highly advantageous as regards 
following the apparatus during ascent, and recovering it on landing. The path can be 
followed, by day, by the ejection of smoke at intervals, and at night by flashes. A n y  distinc- 
tive feature, as, for example, a long black streamer, could assist in rendering the instru- 
ments visible on the return. 
[52] Some means will, of course, be necessary to check the velocity of the returning in- 
struments. It might not appear, at first sight, that a parachute would be operative at a 
velocity of 10,000 ft/sec or more; but it should be remembered that this velocity will occur 
in air of very small density, so that the pressure, or force per unit area of the parachute, 
would not be excessive, notwithstanding the high velocity of the apparatus. The magni- 
tudes of the air resistance will, of course, be much larger than would be indicated from the 
values of Rin Tables V and VI, from the fact that, for motion with the parachute, the cross 
section will be much larger in proportion to the mass of the rocket than for the cases 
presented in these tables. 

If the parachute is so large that the velocity will be decreased greatly when the denser 
air is reached, the descent will be so slow that finding of the apparatus will not be SO easy as 
would be the case with a more rapid descent. For this reason, part of the parachute device 
must be lost automatically when the apparatus has fallen into air of a certain density; or 
else the parachute must be small enough to facilitate a rapid descent, with additional 
parachute devices rendered operative as the rocket nears the ground. Such devices are not 
described in the present paper, but can be of simple and light construction. 

The effectiveness of a parachute of even moderate size, operating in a region where 
the density is small, may be demonstrated by the following concrete example. Suppose 
that an apparatus weighing 1 lb and having a parachute of 1 sq ft area descends from the 
altitude 1,228,000 ft (over 200 miles), and does not encounter any atmospheric resistance 
until it is level with the upper limit of s, (125,000 ft). This condition will not, of course, be 
that which would actually obtain in practice, for a continually increasing resistance will be 
experienced as the apparatus descends; but if a sufficient braking action can be shown to 
exist in the present example, the parachute device will afortion' be satisfactory in practice. 

The velocity acquired by the apparatus in falling freely under the influence of gravity 
between the two levels is 

464 x 1,103,000 = 8400 f t /  sec 

Now the air resistance in poundals per square inch of section at atmospheric pres- 
sure for this velocity is, from the plot of Mallock's formula, 360 x 32 poundals per square 
inch, making the value of Rfor the area of the parachute 

R= 1,653,000 poundals/in.2 

[53] But the actual resistance is R, multiplied by the relative density at 125,000 ft  which is 
approximately 0.01, giving for the resistance 

F= 16,530 poundals/in.2 

A retarding acceleration must therefore act upon the apparatus, of amount given by 

F 
M 

a=-=16,530 ft/sec2 
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Hence it is safe to say that, long before the apparatus had fallen to the 125,000-ft h e l ,  the 
velocity would have been reduced to, and maintained at, a safe value, with the emQloymnt of even a 
smallparachute. This case, it should be noticed, is entirely different from that of a falling 
meteor, in that the apparatus under discussion falls from rest, at the highest point reached; 
whereas the meteor enters the earth’s atmosphere with an enormous initial velocity. 

If it is considered desirable, for any reason, to dispense with a sufficiently large para- 
chute, the retarding of the apparatus may be accomplished to any degree by having the 
rocket consist, at its highest point of flight, not merely of instruments plus parachute, but 
of instruments together with a chamber, and considerable propellant material. Then, af- 
ter the rocket has descended to some lower level, let us say, to the upper limit of s,, this 
propellant material can be ejected, so that the velocity is considerably checked before the 
apparatus reaches as low an altitude as, say, 5000 ft. For the cases in which the effective 
velocity c( l - k )  is as large as 7000 ft/sec there is little inconvenience in increasing the mass 
in this way. But for the case in which c( l-k) = 3500, this method can hardly be as satisfac- 
tory as the parachute method; for if the “final” mass to be elevated is made a number of 
pounds, let us say n, the “total initial mass” (which is large even for one pound final mass) 
will be n-fold larger, and the apparatus correspondingly more expensive. 

Aj$&xbns to Daily Observations 

Before leaving the subject of the attainment of high altitudes within the earth’s atmo- 
sphere, it will be well to mention briefly another application of the method herein dis- 
cussed: namely, to the sending daily of small recording instruments to moderate altitudes, 
such as 5 or 6 miles. As is already understood, simultaneous daily observations of the verti- 
cal gradients of pressure, temperature, and wind velocity, at a large number of stations 
would doubtless be of great value in weather forecasting. The method herein described 
[54] is evidently well suited for such a purpose, in that the time of rise and fall would be 
short, so that the apparatus could easily be found on the return. Thus the expense would 
be slight, being simply that of a fresh magazine of cartridges for each day. 

For this work, as well as for that previously described, the head of the rocket should 
be prevented from rotating, by means of a gyroscope, such as is explained in U.S. Patent 
No. 1,102,653. 

Calculation of Minimum Mass Required to Raise One Pound to an ‘TnfiniVAltitude 

From the fact that the preceding calculation leads us to conclude that such an ex- 
treme altitude as 2,310,000 ft (over 437 miles) can be reached by the employment of a 
moderate mass, provided the efficiency is high, it becomes of interest to speculate as to 
whether or not avelocity as high as the “parabo1ic”velocity for the earth could be attained 
by an apparatus of reasonably small initial mass. 

Theoretically, a mass projected from the surface of the earth with a velocity of 
6.95 miles/sec would, neglecting air resistance, reach an infinite distance, after an infinite 
time; or, in short, would never return. Such a projection without air resistance, is, of course, 
impossible. Moreover, the mass would not reach infinity but would come under the gravi- 
tational influence of some other heavenly body. 

We may, however, consider the following conceivable case: If a rocket apparatus such 
as has here been discussed were projected to the upper end of interval s,, with an accelera- 
tion of 50 or 150 ft/sec2, and this acceleration were maintained to a sufficient distance 
beyond s,, until the parabolic velocity were attained, the mass finally remaining would 
certainly never return. 

If we designate as the upper end of s, the height at which the velocity of ascent be- 
comes the “parabolic” velocity, it will be evident that this height will be different for the 
two accelerations chosen, inasmuch as the “parabolic” velocity decreases with increasing 
distance from the center of the earth. 
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Ifwe call n = the “parabo1ic”velocity at a distance Habove the surface of the earth 
u,= the velocity acquired at the upper end of interval s,, 
s~ the height of the upper end of s, above sea level 

we have, taking the radius of the earth as 20,900,000 ft, 

u =  u,+ at 
H =  %+ u,t + ‘/?a? 

[55] and also the equation relating “parabolic”ve1ocity to distance from the center of the earth 

U 20,900,000 

On putting the values of u and H, from ( 1  1 )  and (12), in (13), we have 

(14) 4- x 36,700 = (u ,+at)  J21,400,000+u,t+1/2at2 

Equation (14) is a biquadratic in t ,  from which t may easily be obtained (by trial and 
error). The values oft, for the two accelerations chosen, given in Table V, enable u and the 
initial masses for s, to be at once obtained. 

The effect of air resistance in s, is negligible, if we accept Wegener’s conclusions, 
above mentioned, concerning the properties of geocoronium. But even if we use the em- 
pirical rule of a fall of density to one-half for every 3.5 miles, we shall find the reduction of 
velocity very small on passing from the upper end of s, (500,000 ft) to 1,000,000 ft  (beyond 
which the density is negligible). This is shown in Appendix F. 

The “total initial masses,” to raise one pound to an “infinite” altitude for the two 
accelerations chosen, are given in Table VII. It will be observed that they are astonishingly 
small, provided the efficiency is high. Thus with an “effective velocity” of 7000 ft/sec, and 
an acceleration of 150 ft/secz, the “total initial mass,” starting at sea level, is 602 lb, and 
starting from 15,000 ft is 438 lb.” The mass required increases enormously with decreasing 
efficiency, for, with but half of the former “effective velocity” (3500 ft/sec), the “total ini- 
tial mass,” even for a start from 15,000 ft, is 351,000 Ib. The masses would obviously be 
slightly less if the acceleration exceeded 150 ft/sec2. 

It is of interest to speculate upon the possibility of proving that such extreme alti- 
tudes load been reached even if they actually were attained. In general, the proving would 
be a difficult matter. Thus, even if a mass of flash powder, arranged to be ignited automati- 
cally after a long interval of time, were projected vertically upward, the light would at best 
be very faint, and it would be difficult to foretell, even approximately, the direction in 
which it would be most likely to appear. 

The only reliable procedure would be to send the smallest mass of flash powder 
possible to the dark surface of the moon when in conjunction (Le., the “new” moon), in 
such a way that it would be [56] ignited on impact. The light would then be visible in a 
powerful telescope. Further, the larger the aperture of the telescope, the greater would be 
the ease of seeing the flash, from the fact that a telescope enhances the brightness of point 
sources, and dims a faint background. 

An expenmentwas performed to find the minimum mass of flash powder that should 
be visible at any particular distance. In order to reproduce, approximately, the conditions 
that would obtain at the surface of the moon, the flash powder was placed in small cap- 
sules C, Plate 9, Fig. 1 ,  held in glass tubes 7; closed by rubber stoppers. The tubes were 
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exhausted to a pressure of from 3 to 10 cm of mercury, and sealed, the stoppers being 
painted with wax, to preserve the vacuum. Two shellacked wires, passing to the powder, 
permitted firing of the powder by an automobile spark coil. 

It was found that Victor flash powder was slightly superior to a mixture of powdered 
magnesium and sodium nitrate, in atomic proportions, and much superior to a mixture of 
powdered magnesium and potassium chlorate, also in atomic proportions. 

In the actual test, six samples of Victor flash powder, varying weight from 0.05 gm to 
0.0029 gm, were placed in tubes as shown in Plate 9, Fig. 1, and these tubes were fastened 
in blackened compartments of a box, Plate 9, Fig. 2, and Plate 10, Fig. 1. The ignition 
system was placed in the back of the same box, as shown in Plate 10, Fig. 2. This system 
comprised a spark coil, operated by three triple cells of Eveready battery, placed two by 
two in parallel. The charge was fired on closing the primary switch at the left. The six-point 
switch at the right served to connect the tubes, in order, to the high-tension side of the 
coil. 

The flashes were observed at a distance of 2.24 miles on a fairly clear night; and it was 
found that a mass of 0.0029 gm of Victor flash powder was visible, and that 0.015 gm was 
strikingly visible, all the observations being made with the unaided eye. The minimum 
mass of flash powder visible at this distance is thus surprisingly small. 

From these experiments it is seen that if this flash powder were exploded on the 
surface of the moon, distant 220,000 miles, and a telescope of 1-ft aperture were used- 
the exit pupil being not greater than the pupil of the eye (e.g., 2mm)-we should need a 
mass of flash powder of 

2.67 lb to be just visible 
13.82 lb or kss to be strikingly visible 

[57] If we consider the final mass of the last “secondary” rocket plus the mass of the flash 
powder and its container, to be four times the mass of the flash powder alone, we should 
have, for the final mass of the rocket, four times the above masses. These final masses 
correspond to the “one pound final mass” which has been mentioned throughout the 
calculations. 

The “total initial masses,” or the masses necessary for the start at the earth, are at 
once obtained from the data given in Table VII. Thus if the start is made from sea level, 
and the “effective velocity of ejection” is 7000 ft/sec, we need 602 lb for every pound that 
is to be sent to “infinity.’ 

We arrive, then, at the conclusion that the “total initial masses” necessary would be 

6,436 lb or 3.21 tons; flash just visible 
33,278 lb or 16.63 tons (or less); flash strikingly visible 

A “total initial mass” of 8 or 10 tons would, without doubt, raise sufficient flash pow- 
der for clear visibility.*’ 

These masses could, of course, be much reduced by the employment of a larger 
telescope. For example, with an aperture of 2 ft, the masses would be reduced to one- 
fourth of those just given. The use of such a large telescope would, however, limit consid- 
erably the possible number of observers. In all cases, the magnification should be so low 
that the entire lunar disk is in the field of the telescope. 

It should be added that the probability of collision of a small object with meteors of 
the visible type is negligible, so is indicated in Appendix G. 

This plan of sending a mass of flash powder to the surface of the moon, although a 
matter of much general interest, is not of obvious scientific importance. There are, how- 
ever, developments of the general method under discussion, which involve a number of 

1. A simple calculationPo will show that the total initial mass required to send one pound to the surface of 
the moon is but slightly less than that required to send the mass to “infinity.” 
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important features not herein mentioned, which could lead to results of much scientific 
interest. These developments involve many experimental difficulties, to be sure; but they 
depend upon nothing that is really impossible. 

[581 Summary 

1. An important part of the atmosphere, that extends for many miles beyond the 
reach of sounding balloons, has up to the present time been considered inaccessible. Data 
of great value in meteorology and in solar physics could be obtained by recording instru- 
ments sent into this region. 

2. The rocket, in principle, is ideally suited for reaching high altitudes, in that it 
carries apparatus without jar, and does not depend upon the presence of air for propul- 
sion. A new form of rocket apparatus, which embodies a number of improvements over 
the common form, is described in the present paper. 

3. A theoretical treatment of the rocket principle shows that, if the velocity of expul- 
sion of the gases were considerably increased and the ratio of propellant material to the 
entire rocket were also increased, a tremendous increase in range would result, from the 
fact that these two quantities enter exponentially in the expression for the initial mass of 
the rocket necessary to raise given mass to a given height. 

4. Experiments with ordinary rockets show that the efficiency of such rockets is of 
the order of 2 percent, and the velocity of ejection of the gases, 1000 ft/sec. For small 
rockets the values are slightly less. 

With a special type of steel chamber and nozzle, an efficiency has been obtained with 
smokeless powder of over 64 percent (higher than that of any heat engine ever before 
tested); and a velocity of nearly 8000 ft/sec, which is the highest velocity so far obtained in 
any way except in electrical discharge work. 

5. Experiments were repeated with the same chambers in vacuo, which demonstrated 
that the high velocity of the ejected gases was a real velocity and not merely an effect of 
reaction against the air. In fact, experiments performed at pressures such as probably exist 
at an altitude of 30 miles gave velocities even higher than those obtained in air at atmo- 
spheric pressure, the increase in velocity probably being due to a difference in ignition. 
Results of the experiments indicate also that this velocity could be exceeded, with a modi- 
fied form of apparatus. 
[59] 6. Experiments with a large chamber demonstrated not only that large chambers are 
operative, but that the velocities and efficiencies are higher than for small chambers. 

7. A calculation based upon the theory, involving data that is in part that obtained by 
experiments, and in part what is considered as realizable in practice, indicates that the 
initial mass required to raise recording instruments of the order of one pound, even to the 
extreme upper atmosphere, is moderate. The initial mass necessary is likewise not exces- 
sive, even if the effective velocity is reduced by half. Calculations show, however, that any 
apparatus in which ordinary rockets are used would be impracticable owing to the very 
large initial masses that would be required. 

8. The recovery of the apparatus on its return, need not be a difficult matter, from 
the fact that the time of ascent even to great altitudes in the atmosphere will be compara- 
tively short, owing to the high speed of the rocket throughout the greater part of its course. 
The time of descent will also be short; but free fall can be satisfactorily prevented by a 
suitable parachute. A parachute will be operative for the reason that high velocities and 
small atmospheric densities are essentially the same as low velocities and ordinary density. 

9. Even if a mass of the order of a pound were propelled by the apparatus under 
consideration until it possessed sufficient velocity to escape the earth’s attraction, the ini- 
tial mass need not be unreasonably large, for an effective velocity of ejection which is 
without doubt attainable. A method is suggested whereby the passage of a body to such an 
extreme altitude could be demonstrated. 
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Conclusion 

Although the present paper is not the description of a working mode, it is believed, 
nevertheless, that the theory and experiments, herein described, together settle all points 
that could seriously be questioned, and that it remains only to perform certain necessary 
preliminary experiments before an apparatus can be constructed that will carry recording 
instruments to a n y  desired altitude." 

[GO1 Appendix A 

Themy of the Modon with Direct Lip 

Let M =  the mass of the suspended system, comprising the chamber together with any 
parts rigidly attached thereto 

wire, the smokeless powder charge (and also, in the experiments in vacuo, the 
black powder priming charge) 

m,, =the mass of the expelled charge, comprising wadding and the attached copper 

V= the initial upward velocity of the mass M 
tr = the average downward velocity of the mass ik& 
s = the upward displacement of the mass M 

We have at once for the initial velocity of the mass M 

vz = 2gs 

and employing the conservation of momentum, we have for the kinetic energy per gram 
of mass m,,, expelled, 

v 2  M 2  -=- 
2 q ) z g s  

Appendiv B 

Theory of Dirphcements fm Simple Harmonic Motion 

In addition to the notation given under Appendix A, the following additional nota- 
tion must be employed: 
Let m, =the mass of the spring 

F, =the force in dynes which produces until extension of the spring 
M, =the mass in dynes which produces unit extension of the spring 

s =the upward displacement of M, resulting from the firing, that would 
be had if there were no friction 

Then, allowing for the mass of the spring, we have, from the theory of simple har- 
monic motion: 

where xis any displacement and pis the period of the motion, 
[61] But Vis the maximum velocity during the motion and hence V =  WS, where s is the 
maximum displacement and o is a constant, having the usual significance; also 

27T p=- 
0 
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Hence 

But by the conservation of linear momentum, 

Hence 

giving, for the kinetic energy per gram of mass expelled, 

From this it is possible to obtain the efficiency, by dividing by the heat value of the 
powder, in ergs; and also the velocity in kilometers per second by multiplying by 2 ,  extract- 
ing the square root, and dividing by lo’. 

C m c t i o n  of the Displacement s for Friction 

The displacement s in the preceding calculation is assumed to be the corrected 
displacement. This is obtained from the upward displacement s, and the downward dis- 
placement s,, as 

Appendix C 

Theory of Direct-lifi Impulse Meter 

The theory of the direct-lift impulse-meter is as follows: 
Calling 1 the momentum of the gas that strikes the end of the aluminum cylinder, 

m, = the mass of the aluminum cylinder 
V,  = the initial upward velocity of the cylinder 
A, = the area of cross section of the cylinder 
A, = the area of cross section of the suspended system comprising the gun, lead weight, 

and holders 
s = the displacement of the aluminum cylinder, as obtained [62] from the trace on 

the smokedglass tube 

Thus we have, by the principle of the conservation of linear momentum, for the momen- 
tum per unit area produced by the gaseous rebound, 

I - m,V, -m,d2gs 

A, A, A, 
Hence the momentum communicated to the suspended system by the gaseous rebound is 
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and calling Q the ratio or the momentum given the gun by gaseous rebound to the ob- 
served momentum of the suspended system, we have 

Appendix D 

Theory of spring Zmplrse Meter 

The theory of the spring impulse meter is as follows: Ifwe use the same notation as in 
the preceding case, calling, in addition, the mass of the spring m, and the mass required 
for unit extension of the spring m, we have, by the same theory as that for the gun sus- 
pended by a spring, 

Hence the momentum per unit area, communicated to the upper cap of the 12-in. pipe, 
when the chamber is fired, is 

-= I (mc+1 /3+)Vc  = .Jm,+l/3msdG 
A, A, A, 

Hence the momentum that would be communicated to the suspended system by the gas- 
eous rebound, provided the system were at the top of the 12411. pipe, would be 

and the percentage Q of the momentum communicated by the gaseous rebound to the 
observed momentum of the suspended system is 

A g J m , + l / 3 m S d G  
4= 

A P O V  

[631 Appendix E 

ChecR on Approximate Method of Calculation for Small charges Fired in Rapid Succession 

Consider a rocket weighing 10 lb, having 2 lb of propelling material, fired 2 oz at a 
time, eight times per second, with a velocity of 6000 ft/sec-much less than the highest 
velocity attained in the experiments, either in air or in vacuo. 

Let us suppose that, for simplicity, the rocket is directed upward and that each shot 
takes place instantly (a supposition not far from the truth); the velocity remaining con- 
stant between successive shots. 
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After the first shot, the mass, 9 7/s lb, has an upwardvelocity v, is at once found by the 
conservation of momentum. But it is decreased by gravity until, at the end of ‘/a sec, it is 
reduced to 

v o ‘ = v , - g t  

the space passed over during this time being 

s = v,t -’/2gt2 

We have then, v o ’ =  71.8 ft/sec, and s =  9.23 ft. 
At the beginning of the second interval of ‘ / 8  sec, and additional velocity is given the 

remaining mass, of 76.8 ft/sec, and the final velocity’ and space passed over may be found 
in the same way. By completing the calculations for the remaining intervals we shall have 
for time just under ‘/2 sec, 

v’ = 293.1 ft/sec s = 91.93 ft 

for time just under 1 sec, 

u,’ = 603.8 ft/sec s = 335.48 ft and 

for time just under 2 sec, 

v o ’ =  1284.1 ft/sec s=1315.68 ft/sec 

These figures compare well with those in Table V, for s,. In the present check, air 
resistance would doubtless be unimportant until the velocity had reached 1000 ft/sec or 
so; but the velocity would, even if decreased somewhat by air resistance, compare favorably 
with that of a projectile fired from a gun. 

No more elaborate calculation is necessary to demonstrate the importance of the 
device, even for military purposes alone; for i t  combines portability and cheapness (no 
gun is required for firing it) with a range which compares favorably with the best artillery. 
Further, all difficulties of the nature of erosion are, of course, avoided. 

[641 Appendix F 

Proof h t  the Returdation between 500,000 Feet and 1,000,000 Feet is Negligible 

The falling off of velocity w, due to air resistance, is given by 

P e s h  =1/2Mow1* 
Po 

where P = the mean air resistance in poundals per square inch between the altitudes 
500,000 and 1,000,000 ft from the previously mentioned velocity curves, the 
pressure being considered at atmospheric 

P = the mean density over this distance 
S =the mean area of cross section of the apparatus throughout the distance, taken 

h = the distance traversed: 500,000 ft 
as 25 sq in, in view of the the average mass throughout the interval 

It is thus found that the loss of velocity w is less than 10 ft/sec (for a = 150 ft/sec) even 
when p / p o  is taken as constant throughout the distance and equal to that at 500,000 f t  (i.e., 
2.73 x 
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Appendix G 

ProbabiliCy of Collision with M e t e m  

The probability of collision with meteors of "visible" size is negligible. This can be 
shown by deriving an expression for the probability of collision of a sphere with particles 
moving in directions at random, all having constant velocity, the expression being ob- 
tained on the assumption that the speed of the sphere is small compared with the speed of 
the particles. 

If we accept Newton's estimate' of the average distance apart of meteors as being 
250 miles, we have by considering collision between very small meteors of velocity 
30 miles/sec, and a sphere 1 ft in diameter of velocity 1 mile/sec, moving over a distance 
of 220,000 miles, the probability 23 as 1.23 x 10-8; which is, of course, practically negli- 
gible. The value would be slightly greater if the meteors were considered as having a diam- 
eter of several centimeters, rather than being particles"; the probability would be less, 
however, if meteor swarms were avoided. 

[651 Notes 

10. A step-by-step method of solution similar to that herein employed can evidently be used for oblique 
projection-other conditions remaining the same. 

11. If the efficiency is estimated by the kinetic energy of the rocket itself (from the velocity the average 
mass of the rocket would acquire, by virtue of the recoil of the gases ejected with the "average velocity" mea- 
sured), the efficiencies will, of course, be less than the two values given in Table l ,  being, respectively, 0.39 and 
0.50 percent. 

12. Since this manuscript was written, rockets with a single charge, constructed along the general lines 
here explained, have been considerably further developed. 

13. Chambers of considerably reduced weight have since been made and tested for velocities comparable 
to those here mentioned. For two particular types of loading device, the ratios ofweight of chamber to weight of 
charge (here, 120) were, respectively 63 (also 30 for this case, but at a sacrifice of velocity) and 22; the ratio, for 
the nozzles, being reducible to comparatively small values. In neither of these cases was any special attempt 
made to reduce the weight of the chambers. 

14. Later experiments support this prediction, and also demonstrate that firing of the charges can take 
place in rapid succession. 

15. The values of cand (1-k, here assigned), were chosen as being the largest that could reasonably be 
expected. Later experiments have shown that lower values are more easily realizable, but it should at the same 
time be understood that no special attempt has been made to obtaan expm'mentally the highest values ofthese quantities. 
The numbers chosen may, then, be considered as at least possible limiting values. 

It is well to mention, in this connection, that the developments with the multiple<harge rocket have, so 
far, exceeded original expectations. This is in accord with the fact that the experimental results have, from the 
start, been more favorable than were expected. Thus an efficiency of 50 percent was at first considered the limit 
of what could be attained, and 4000 to 5000 ft/sec, the highest possible velocity. Further it was naturally not 
expected that the velocities obtained in vacuo would actually exceed those in air; nor were chambers as light as 
those at present used considered producible without considerable experimental difficulty. 

16. Distribution of mass among the secondary rockets for cases of large total initial mass. For very great altitudes, 
secondary rockets will be necessary, as already explained, in order to keep the proportion of propellant to total 
weight sensibly constant. The most extreme cases will require groups of secondary rockets, which groups are 
discharged in succession. 

There are, under any circumstances, two possibilities: either the secondaries may be small, so that each 
time a secondary rocket, or group of secondaries, is discarded, the total mass is not appreciably changed, as 
indicated schematically at (a). Fig. 8; or a series of as large secondaries as possible may be used (b), Fig. 8, in 
which case the empty casings constitute a considerable fraction of the entire weight at the time the discarding 
takes place. 
[661 Insofar as avoiding difficulties of construction is concerned, the use of a smaller number of larger second- 
aries is preferable, but they should be long and narrow, as otherwise the air resistance on the nearly empty 
casings will be greater for the same weight of propellant than would be the case (a),  were used, in as compact an 
arrangement as possible. It should be explained, also, that ifverysmall secondaries were employed, the metal of 
the magazines and casings would become a considerable fraction of the entire weight, as the amount of surface 
enclosing the propellant would then be a maximum. 

7. Newton, Enqc. Brit., 9 ed., v. 16. 
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Possiblity ofemploying case (b) .  A rough calculation shows at once the possibility of using a comparatively 
small number of large secondaries [67] (or groups), provided, as is, of course, to be expected from dimensional 
considerations, that the larger any individual rocket, the less, in proportion, need be the ratio of weight of 
metal to weight of propellant. 

Such a calculation can be made by finding the number of secondary rockets, for case (61, that would be 
required for the same total initial mass, other conditions being the same, as for continuous loss of mass with 
zero relative velocity, which is practically case (a). 

For the latter, Eq. (7) ,  in which Rand g are neglected, is evidently sufficient for the purpose, for the 
reason that the form of the expression, so far as ( I - k )  is concerned, is the same whether or not R and g are 
included. 

Let us now find what conditions must hold for case (b) ,  in order that the total initial mass shall equal that 
for case (a). Assume, first, that the casings are discarded successively at the end of n equal intervals of time, no 
mass being discarded except at these times; the velocity of gas ejection being c, as before. The total initial mass 
is obtained as the product of the initial masses for each interval, from Eq (7) with k = 0, assuming the final mass 
for each interval is, as before 1 Ib, after first multiplying the initial masses by a greater factor than unity, the 
excess over unit being the weight h of the casings which are discarded at the end of the intervals. 

If, in case (a ) ,  we divide the time into n equal intervals in the same way, we shall have, as the condition 
that the total initial masses are the same in the two cases, 

(15) 
a ( t / n ) n  a ( t / n ) n  M = exp- = (1+ h)" exp- 
c (1 -k )  C 

We obtain, then, on combining (15) with ( 7 ) ,  

from which 

M k  =(l+h)"  

log M n = k -  
log ( I + h )  

Let us assume, for case (a) (many small secondary rockets), as well as for case (6) (large secondary rock- 
ets), that the ratio of mass of metal to mass of propellant is the minimum reasonable amount that can be 
expected, which may be put tentatively, at least, as 1:14 and 1:18, respectively. 

Two cases will suffice for purpose of illustration: one in which the ratio of initial to final mass is moder- 
ately large, e.g., 40, and the other in which the ratio is extreme, e.g., 600. 
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The number of secondaries (or separate groups) for (b), for these two cases, are, from (16), 5 and 9 
respectively, n being necessarily an integer. 

It is to be understood that the numbers could be made even smaller, although this would necessitate 
larger total initial masses. 

17. If the start were made at a greater elevation than 15,000 ft, for example, at 20,000 or 25,000 ft, the 
reduction of the “total initial mass” would, of course, be considerably greater. Further, if the rocket were of 
comparatively small mass, it could be raised to an even greater initial height by balloons. 

18. Actually, 300 gm would be sufficient, for many researches. 
19. Attention is called to the fact that hydrogen and oxygen, combining in atomic proportions, afford 

the greatest heat per unit mass of all chemical transformations. For this reason, if the calculations are made 
under the [68] assumption that hydrogen and oxygen are used (in the liquid or solid state, to avoid weight of 
the container), giving the same efficiency as that for which Infallible smokeless powder produces respective 
velocities of, for example, 5500 ft/sec and 7500 ft/sec, the velocities (deducting 218.47 cal/gm as the latent 
heat plus specific heat, from boiling point to ordinary temperature) would be 9400 ft/sec and 11,900 ft/sec; 
and the total initial masses for a start from 15,000 ft, respectively, 199 Ib and 43.5 Ib. 

Incidentally, except for difficulties of application, the use of hydrogen and oxygen would have several 
other evident advantages. 

20. This calculation is made under the assumption of stationary centers for the earth and moon. 
21. The time of transit for the case under discussion would, of course, be comparatively large. If, how- 

ever, the final velocity were to exceed by 1000 or 2000 ft/sec the velocity calculated, the time would be reduced 
to a day or two. 

The time can be calculated from solution, by Plana (Memorie della Reale Accademia della Scienze di 
Torino, Ser. 2, vol. 20,1863, pp. 1-86), of the analogous problem of the determination of the initial velocity and 
time of transit of a body, such as a volcanic rock, projected from the moon toward the earth. 

22. At the time of signing of the Armistice, the net result of the development of a reloading mechanism 
had been the demonstration of an operative apparatus that was simple and travelled straight, with the essential 
parts sufficiently strong and light, using a few cartridges of simple form. 

The work remaining, upon which progress has since been made, has been the adaptation of the device 
for a large proportionate weight of propellant. 

23. The probable number of collisions here calculated is the sum of the probable numbers obtained by 
taking of velocity of the spherical body, and of the meteors, separately equal to zero. 

Let u = velocity of the spherical body 
V =  velocity of the meteors 
n = the number of meteors per unit volume, which number is, of course, a fraction 

S = the area of cross section of the spherical body 
(mutual collisions between meteors being neglected) 

For u = 0, the meteors, if any, which strike the sphere during the time t to t + d f  will have come from a 
spherical shell of radii Vf and V(f + df) ,  neglecting the diameter of the spherical body in comparison with that of 
the spherical shell. Further, the probable number in any small volume, in this shell, which are so directed as to 
strike the body, is 

S 
4 n V V  

being the ratio of the solid angle subtended at the element, by the spherical body, to the whole solid angle 4n. 
Hence the probable number of collisions N, from all directions, between the time t ,  and t ,  is, evidently, 

N - nSV( t,-t,) 

For V=O, and expression of the same form is obtained for the probable number of meteors within the 
space swept out by the spherical body. 
1681 The sum of these separate probable numbers is the number 1.23 x IO4 in Appendix G .  

In general, for any values of u and V,  the meteors reaching the spherical body at successive instants come 
from a spherical surface of increasing radius Vt, with moving center distant vt in front of the initial position of 
the spherical body. 

It should be explained that when udiffers but little from V, the relative velocity of the body and meteors 
is small enough to be neglected, for meteors on this expanding spherical surface lying outside a certain cone, 
the vertex of which coincides with the moving center of the spherical body. 

Also if v exceeds V,  the only part of the expanding spherical surface which is to be considered is that lying 
outside the contact circle of the tangent cone, the vertex of which also coincides with the moving center of the 
spherical body. 

Attention is called to the fact that, even if meteor swarms were not avoided, the probable number of 
collisions would be reduced if the direction of motion were substantially that of the swarm. 

24. No difference in the calculation would be necessary if the radius of the sphere were to be increased 
by the diameter of the meteors, these being then considered as particles. 
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